Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
medRxiv ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39148842

ABSTRACT

IMPORTANCE: Olfactory dysfunction is among the earliest signs of many age-related neurodegenerative diseases and has been associated with increased mortality in older adults; however, its genetic basis remains largely unknown. OBJECTIVE: To identify the genetic loci associated with olfactory dysfunction in the general population. DESIGN SETTING AND PARTIICIPANTS: This genome-wide association study meta-analysis (GWMA) included participants of European ancestry (N = 22,730) enrolled in four different large population-based studies, followed by a multi-ancestry GWMA including participants of African ancestry (N = 1,030). The data analysis was performed from March 2023 through June 2024. EXPOSURES: Genome-wide single nucleotide polymorphisms. MAIN OUTCOMES AND MEASURES: Olfactory dysfunction was the outcome and assessed using a 12-item smell identification test. RESULTS: GWMA revealed a novel genome-wide significant locus (tagged by rs11228623 at 11q12) associated with olfactory dysfunction. Gene-based analysis revealed a high enrichment for olfactory receptor genes in this region. Phenome-wide association studies demonstrated associations between genetic variants related to olfactory dysfunction and blood cell counts, kidney function, skeletal muscle mass, cholesterol levels and cardiovascular disease. Using individual-level data, we also confirmed and quantified the strength of these associations on a phenotypic level. Moreover, employing two-sample Mendelian Randomization analyses, we found evidence for causal associations between olfactory dysfunction and these phenotypes. CONCLUSIONS: These findings provide novel insights into the genetic architecture of the sense of smell and highlight its importance for many aspects of human health. Question: What is the genetic basis of olfactory dysfunction, and is it causally related to adverse health outcomes? Findings: This genome-wide association study meta-analysis (GWMA) of 22,730 European and 1,030 African participants identified a novel genomic locus, enriched for olfactory receptor genes, robustly associated with olfactory dysfunction. Two-sample Mendelian Randomization analyses provided evidence for causal associations of olfactory dysfunction with biochemical, anthropometric and cardiovascular health outcomes. Meaning: These findings provide new insights into the genetic architecture of olfaction and implicate olfactory dysfunction as a causal risk factor for many aspects of human health.

2.
Diabetes ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869630

ABSTRACT

Genetic studies of non-traditional glycemic biomarkers, glycated albumin and fructosamine, can shed light on unknown aspects of type 2 diabetes genetics and biology. We performed a multi-phenotype GWAS of glycated albumin and fructosamine from 7,395 White and 2,016 Black participants in the Atherosclerosis Risk in Communities (ARIC) study on common variants from genotyped/imputed data. We discovered 2 genome-wide significant loci, one mapping to known type 2 diabetes gene (ARAP1/STARD10) and another mapping to a novel region (UGT1A complex of genes) using multi-omics gene-mapping strategies in diabetes-relevant tissues. We identified additional loci that were ancestry- and sex-specific (e.g., PRKCA in African ancestry, FCGRT in European ancestry, TEX29 in males). Further, we implemented multi-phenotype gene-burden tests on whole-exome sequence data from 6,590 White and 2,309 Black ARIC participants. Ten variant sets annotated to genes across different variant aggregation strategies were exome-wide significant only in multi-ancestry analysis, of which CD1D, EGFL7/AGPAT2 and MIR126 had notable enrichment of rare predicted loss of function variants in African ancestry despite smaller sample sizes. Overall, 8 out of 14 discovered loci and genes were implicated to influence these biomarkers via glycemic pathways, and most of them were not previously implicated in studies of type 2 diabetes. This study illustrates improved locus discovery and potential effector gene discovery by leveraging joint patterns of related biomarkers across the entire allele frequency spectrum in multi-ancestry analysis. Future investigation of the loci and genes potentially acting through glycemic pathways may help us better understand risk of developing type 2 diabetes.

3.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38233393

ABSTRACT

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Subject(s)
Androgens , Genome-Wide Association Study , Humans , Male , Female , Androgens/genetics , Kidney , Chromosomes, Human, X/genetics , Response Elements , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Tetraspanins/genetics
4.
Nat Commun ; 15(1): 528, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225249

ABSTRACT

Heart failure (HF) causes substantial morbidity and mortality but its pathobiology is incompletely understood. The proteome is a promising intermediate phenotype for discovery of novel mechanisms. We measured 4877 plasma proteins in 13,900 HF-free individuals across three analysis sets with diverse age, geography, and HF ascertainment to identify circulating proteins and protein networks associated with HF development. Parallel analyses in Atherosclerosis Risk in Communities study participants in mid-life and late-life and in Trøndelag Health Study participants identified 37 proteins consistently associated with incident HF independent of traditional risk factors. Mendelian randomization supported causal effects of 10 on HF, HF risk factors, or left ventricular size and function, including matricellular (e.g. SPON1, MFAP4), senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15, ITIH3) proteins. Protein co-regulation network analyses identified 5 modules associated with HF risk, two of which were influenced by genetic variants that implicated trans hotspots within the VTN and CFH genes.


Subject(s)
Atherosclerosis , Heart Failure , Humans , Proteomics , Risk Factors , Phenotype , Carrier Proteins/genetics , Glycoproteins/genetics , Extracellular Matrix Proteins/genetics
5.
Commun Biol ; 6(1): 1117, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923804

ABSTRACT

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Middle Aged , Humans , Aged , Cognition , Neurons , Biomarkers
6.
medRxiv ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37398180

ABSTRACT

Glycated hemoglobin, fasting glucose, glycated albumin, and fructosamine are biomarkers that reflect different aspects of the glycemic process. Genetic studies of these glycemic biomarkers can shed light on unknown aspects of type 2 diabetes genetics and biology. While there exists several GWAS of glycated hemoglobin and fasting glucose, very few GWAS have focused on glycated albumin or fructosamine. We performed a multi-phenotype GWAS of glycated albumin and fructosamine from 7,395 White and 2,016 Black participants in the Atherosclerosis Risk in Communities (ARIC) study on the common variants from genotyped/imputed data. We found 2 genome-wide significant loci, one mapping to known type 2 diabetes gene (ARAP1/STARD10, p = 2.8 × 10-8) and another mapping to a novel gene (UGT1A, p = 1.4 × 10-8) using multi-omics gene mapping strategies in diabetes-relevant tissues. We identified additional loci that were ancestry-specific (e.g., PRKCA from African ancestry individuals, p = 1.7 × 10-8) and sex-specific (TEX29 locus in males only, p = 3.0 × 10-8). Further, we implemented multi-phenotype gene-burden tests on whole-exome sequence data from 6,590 White and 2,309 Black ARIC participants. Eleven genes across different rare variant aggregation strategies were exome-wide significant only in multi-ancestry analysis. Four out of 11 genes had notable enrichment of rare predicted loss of function variants in African ancestry participants despite smaller sample size. Overall, 8 out of 15 loci/genes were implicated to influence these biomarkers via glycemic pathways. This study illustrates improved locus discovery and potential effector gene discovery by leveraging joint patterns of related biomarkers across entire allele frequency spectrum in multi-ancestry analyses. Most of the loci/genes we identified have not been previously implicated in studies of type 2 diabetes, and future investigation of the loci/genes potentially acting through glycemic pathways may help us better understand risk of developing type 2 diabetes.

7.
Sci Transl Med ; 15(705): eadf5681, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37467317

ABSTRACT

A diverse set of biological processes have been implicated in the pathophysiology of Alzheimer's disease (AD) and related dementias. However, there is limited understanding of the peripheral biological mechanisms relevant in the earliest phases of the disease. Here, we used a large-scale proteomics platform to examine the association of 4877 plasma proteins with 25-year dementia risk in 10,981 middle-aged adults. We found 32 dementia-associated plasma proteins that were involved in proteostasis, immunity, synaptic function, and extracellular matrix organization. We then replicated the association between 15 of these proteins and clinically relevant neurocognitive outcomes in two independent cohorts. We demonstrated that 12 of these 32 dementia-associated proteins were associated with cerebrospinal fluid (CSF) biomarkers of AD, neurodegeneration, or neuroinflammation. We found that eight of these candidate protein markers were abnormally expressed in human postmortem brain tissue from patients with AD, although some of the proteins that were most strongly associated with dementia risk, such as GDF15, were not detected in these brain tissue samples. Using network analyses, we found a protein signature for dementia risk that was characterized by dysregulation of specific immune and proteostasis/autophagy pathways in adults in midlife ~20 years before dementia onset, as well as abnormal coagulation and complement signaling ~10 years before dementia onset. Bidirectional two-sample Mendelian randomization genetically validated nine of our candidate proteins as markers of AD in midlife and inferred causality of SERPINA3 in AD pathogenesis. Last, we prioritized a set of candidate markers for AD and dementia risk prediction in midlife.


Subject(s)
Alzheimer Disease , Proteomics , Middle Aged , Humans , Adult , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Brain/metabolism , Biomarkers/metabolism
8.
Biol Psychiatry Glob Open Sci ; 3(3): 490-499, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519456

ABSTRACT

Background: Plasma amyloid-ß (Aß) (Aß42, Aß40, and Aß42/Aß40), biomarkers of the Alzheimer's form of dementia, are under consideration for clinical use. The associations of these peptides with circulating proteins may identify novel plasma biomarkers of dementia and inform peripheral factors influencing the levels of these peptides. Methods: We analyzed the association of these 3 plasma Aß measures with 4638 circulating proteins among a subset of the participants of the Atherosclerosis Risk in Communities (ARIC) study (midlife: n = 1955; late life: n = 2082), related the Aß-associated proteins with incident dementia in the overall ARIC cohort (midlife: n = 11,069, late life: n = 4110) with external replication in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study (n = 4973), estimated the proportion of Aß variance explained, and conducted enrichment analyses to characterize the proteins associated with the plasma Aß peptides. Results: At midlife, of the 296 Aß-associated proteins, 8 were associated with incident dementia from midlife and late life in the ARIC study, and NPPB, IBSP, and THBS2 were replicated in the AGES-Reykjavik Study. At late life, of the 34 Aß-associated proteins, none were associated with incident dementia at midlife, and kidney function explained 10%, 12%, and 0.2% of the variance of Aß42, Aß40, and Aß42/Aß40, respectively. Aß42-associated proteins at midlife were found to be enriched in the liver, and those at late life were found to be enriched in the spleen. Conclusions: This study identifies circulating proteins associated with plasma Aß levels and incident dementia and informs peripheral factors associated with plasma Aß levels.

9.
Arthritis Rheumatol ; 75(9): 1648-1657, 2023 09.
Article in English | MEDLINE | ID: mdl-37043280

ABSTRACT

OBJECTIVE: To prospectively investigate population-based metabolomics for incident gout and reproduce the findings for recurrent flares, accounting for serum urate. METHODS: We conducted a prediagnostic metabolome-wide analysis among 105,615 UK Biobank participants with nuclear magnetic resonance metabolomic profiling data (168 total metabolites) from baseline blood samples collected 2006-2010 in those without history of gout. We calculated hazard ratios (HRs) for incident gout, adjusted for gout risk factors, excluding and including serum urate levels, overall and according to fasting duration before sample collection. Potential causal effects were tested with 2-sample Mendelian randomization. Poisson regression was used to calculate rate ratios (RRs) for the association with recurrent flares among incident gout cases. RESULTS: Correcting for multiple testing, 88 metabolites were associated with risk of incident gout (N = 1,303 cases) before serum urate adjustment, including glutamine and glycine (inversely), and lipids, branched-chain amino acids, and most prominently, glycoprotein acetyls (GlycA; P = 9.17 × 10-32 ). Only GlycA remained associated with incident gout following urate adjustment (HR 1.52 [95% confidence interval (95% CI) 1.22-1.88] between extreme quintiles); the HR increased progressively with fasting duration before sample collection, reaching 4.01 (95% CI 1.36-11.82) for ≥8 hours of fasting. Corresponding HRs per SD change in GlycA levels were 1.10 (95% CI 1.04-1.17) overall and 1.54 (95% CI 1.21-1.96) for ≥8 hours of fasting. GlycA levels were also associated with recurrent gout flares among incident gout cases (RR 1.90 [95% CI 1.27-2.85] between extreme quintiles) with larger associations with fasting. Mendelian randomization corroborated a potential causal role for GlycA on gout risk. CONCLUSION: This prospective, population-based study implicates GlycA, a stable long-term biomarker reflecting neutrophil overactivity, in incident and recurrent gout flares (central manifestation from neutrophilic synovitis) beyond serum urate.


Subject(s)
Gout , Uric Acid , Humans , Prospective Studies , Mendelian Randomization Analysis , Gout/epidemiology , Gout/genetics , Risk Factors , Glycoproteins
10.
J Appl Lab Med ; 8(3): 491-503, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36705086

ABSTRACT

BACKGROUND: We carried out a study of the aptamer proteomic assay, SomaScan V4, to evaluate the analytical and biological variability of the assay in plasma samples of patients with moderate to severe chronic kidney disease (CKD). METHODS: Plasma samples were selected from 2 sources: (a) 24 participants from the Chronic Renal Insufficiency Cohort (CRIC) and (b) 49 patients from the Brigham and Women's Hospital-Kidney/Renal Clinic. We calculated intra-assay variability from both sources and examined short-term biological variability in samples from the Brigham clinic. We also measured correlations of aptamer measurements with traditional biomarker assays. RESULTS: A total of 4656 unique proteins (4849 total aptamer measures) were analyzed in all samples. Median (interquartile range [IQR] intra-assay CV) was 3.7% (2.8-5.3) in CRIC and 5.0% (3.8-7.0) in Brigham samples. Median (IQR) biological CV among Brigham samples drawn from one individual on 2 occasions separated by median (IQR) 7 (4-14) days was 8.7% (6.2-14). CVs were independent of CKD stage, diabetes, or albuminuria but were higher in patients with systemic lupus erythematosus. Rho correlations between aptamer and traditional assays for biomarkers of interest were cystatin C = 0.942, kidney injury model-1 = 0.905, fibroblast growth factor-23 = 0.541, tumor necrosis factor receptors 1 = 0.781 and 2 = 0.843, P < 10-100 for all. CONCLUSIONS: Intra-assay and within-subject variability for SomaScan in the CKD setting was low and similar to assay variability reported from individuals without CKD. Intra-assay precision was excellent whether samples were collected in an optimal research protocol, as were CRIC samples, or in the clinical setting, as were the Brigham samples.


Subject(s)
Diabetes Mellitus , Renal Insufficiency, Chronic , Humans , Female , Proteomics , Cohort Studies , Renal Insufficiency, Chronic/diagnosis , Biomarkers
11.
Thyroid ; 33(3): 301-311, 2023 03.
Article in English | MEDLINE | ID: mdl-36719767

ABSTRACT

Background: Thyroid hormones play a key role in differentiation and metabolism and are known regulators of gene expression through both genomic and epigenetic processes including DNA methylation. The aim of this study was to examine associations between thyroid hormones and DNA methylation. Methods: We carried out a fixed-effect meta-analysis of epigenome-wide association study (EWAS) of blood DNA methylation sites from 8 cohorts from the ThyroidOmics Consortium, incorporating up to 7073 participants of both European and African ancestry, implementing a discovery and replication stage. Statistical analyses were conducted using normalized beta CpG values as dependent and log-transformed thyrotropin (TSH), free thyroxine, and free triiodothyronine levels, respectively, as independent variable in a linear model. The replicated findings were correlated with gene expression levels in whole blood and tested for causal influence of TSH and free thyroxine by two-sample Mendelian randomization (MR). Results: Epigenome-wide significant associations (p-value <1.1E-7) of three CpGs for free thyroxine, five for free triiodothyronine, and two for TSH concentrations were discovered and replicated (combined p-values = 1.5E-9 to 4.3E-28). The associations included CpG sites annotated to KLF9 (cg00049440) and DOT1L (cg04173586) that overlap with all three traits, consistent with hypothalamic-pituitary-thyroid axis physiology. Significant associations were also found for CpGs in FKBP5 for free thyroxine, and at CSNK1D/LINCO1970 and LRRC8D for free triiodothyronine. MR analyses supported a causal effect of thyroid status on DNA methylation of KLF9. DNA methylation of cg00049440 in KLF9 was inversely correlated with KLF9 gene expression in blood. The CpG at CSNK1D/LINC01970 overlapped with thyroid hormone receptor alpha binding peaks in liver cells. The total additive heritability of the methylation levels of the six significant CpG sites was between 25% and 57%. Significant methylation QTLs were identified for CpGs at KLF9, FKBP5, LRRC8D, and CSNK1D/LINC01970. Conclusions: We report novel associations between TSH, thyroid hormones, and blood-based DNA methylation. This study advances our understanding of thyroid hormone action particularly related to KLF9 and serves as a proof-of-concept that integrations of EWAS with other -omics data can provide a valuable tool for unraveling thyroid hormone signaling in humans by complementing and feeding classical in vitro and animal studies.


Subject(s)
Epigenome , Triiodothyronine , Humans , Thyroid Gland , Thyroxine/genetics , CpG Islands , Genome-Wide Association Study , Kruppel-Like Transcription Factors/genetics
12.
Arterioscler Thromb Vasc Biol ; 43(2): 367-378, 2023 02.
Article in English | MEDLINE | ID: mdl-36579647

ABSTRACT

BACKGROUND: Genome-wide association studies have reported 23 gene loci related to abdominal aortic aneurysm (AAA)-a potentially lethal condition characterized by a weakened dilated vessel wall. This study aimed to identify proteomic signatures and pathways related to these risk loci to better characterize AAA genetic susceptibility. METHODS: Plasma concentrations of 4870 proteins were determined using a DNA aptamer-based array. Linear regression analysis estimated the associations between the 23 risk alleles and plasma protein levels with adjustments for potential confounders in a race-stratified analysis of 1671 Black and 7241 White participants. Significant proteins were then evaluated for their prediction of clinical AAA (454 AAA events in 11 064 individuals), and those significantly associated with AAA were further interrogated using Mendelian randomization analysis. RESULTS: Risk variants proximal to PSRC1-CELSR2-SORT1, PCIF1-ZNF335-MMP9, RP11-136O12.2/TRIB1, ZNF259/APOA5, IL6R, PCSK9, LPA, and APOE were associated with 118 plasma proteins in Whites and 59 were replicated in Black participants. Novel associations with clinical AAA incidence were observed for kit ligand (HR, 0.59 [95% CI, 0.42-0.82] for top versus first quintiles) and neogenin (HR, 0.64 [95% CI, 0.46-0.88]) over a median 21.2-year follow-up; neogenin was also associated with ultrasound-detected asymptomatic AAA (N=4295; 57 asymptomatic AAA cases). Mendelian randomization inverse variance weighted estimates suggested that AAA risk is promoted by lower levels of kit ligand (OR per SD=0.67; P=1.4×10-5) and neogenin (OR per SD=0.50; P=0.03). CONCLUSIONS: Low levels of neogenin and kit ligand may be novel risk factors for AAA development in potentially causal pathways. These findings provide insights and potential targets to reduce AAA susceptibility.


Subject(s)
Aortic Aneurysm, Abdominal , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/metabolism , Stem Cell Factor/genetics , Genome-Wide Association Study , Proteomics , Aortic Aneurysm, Abdominal/epidemiology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Transcription Factors/metabolism , Risk Factors , Nuclear Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics
13.
Hum Mol Genet ; 32(6): 1048-1060, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36444934

ABSTRACT

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Aminopeptidases , Diabetic Nephropathies/genetics , Exome Sequencing , Kidney , Renal Insufficiency, Chronic/genetics
14.
Clin Chem ; 69(1): 68-79, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36508319

ABSTRACT

BACKGROUND: The plasma proteome can be quantified using different types of highly multiplexed technologies, including aptamer-based and proximity-extension immunoassay methods. There has been limited characterization of how these protein measurements correlate across platforms and with absolute measures from targeted immunoassays. METHODS: We assessed the comparability of (a) highly multiplexed aptamer-based (SomaScan v4; Somalogic) and proximity-extension immunoassay (OLINK Proseek® v5003; Olink) methods in 427 Atherosclerosis Risk in Communities (ARIC) Study participants (Visit 5, 2011-2013), and (b) 18 of the SomaScan protein measurements against targeted immunoassays in 110 participants (55 cardiovascular disease cases, 55 controls). We calculated Spearman correlations (r) between the different measurements and compared associations with case-control status. RESULTS: There were 417 protein comparisons (366 unique proteins) between the SomaScan and Olink platforms. The average correlation was r = 0.46 (range: -0.21 to 0.97; 79 [19%] with r ≥ 0.8). For the comparison of SomaScan and targeted immunoassays, 6 of 18 assays (growth differentiation factor 15 [GDF15], interleukin-1 receptor-like 1 [ST2], interstitial collagenase [MMP1], adiponectin, leptin, and resistin) had good correlations (r ≥ 0.8), 2 had modest correlations (0.5 ≤ r < 0.8; osteopontin and interleukin-6 [IL6]), and 10 were poorly correlated (r < 0.5; metalloproteinase inhibitor 1 [TIMP1], stromelysin-1 [MMP3], matrilysin [MMP7], C-C motif chemokine 2 [MCP1], interleukin-10 [IL10], vascular cell adhesion protein 1 [VCAM1], intercellular adhesion molecule 1 [ICAM1], interleukin-18 [IL18], tumor necrosis factor [TNFα], and visfatin) overall. Correlations for SomaScan and targeted immunoassays were similar according to case status. CONCLUSIONS: There is variation in the quantitative measurements for many proteins across aptamer-based and proximity-extension immunoassays (approximately 1/2 showing good or modest correlation and approximately 1/2 poor correlation) and also for correlations of these highly multiplexed technologies with targeted immunoassays. Design and interpretation of protein quantification studies should be informed by the variation across measurement techniques for each protein.


Subject(s)
Atherosclerosis , Proteomics , Humans , Proteomics/methods , Interleukin-6 , Immunoassay/methods , Adiponectin
15.
J Am Heart Assoc ; 11(15): e025703, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35862192

ABSTRACT

Background Recent genetic discoveries in stroke have unleashed the potential of using genetic information for risk prediction and health interventions aimed at disease prevention. We sought to estimate the lifetime risk of stroke (LTRS) by levels of genetic risk and to investigate whether optimal cardiovascular health can offset the negative impact of high genetic risk on lifetime risk of stroke. Methods and Results Study participants were 11 568 middle-aged adults (56% women, 23% Black adults), who were free of stroke at baseline and were followed up for a median of 28 years. The remaining LTRS was estimated according to levels of genetic risk based on a validated stroke polygenic risk score, and to levels of cardiovascular health based on the American Heart Association Life's Simple 7 recommendations. At age 45, individuals with high, intermediate, and low polygenic risk score had a remaining LTRS of 23.2% (95% CI, 20.8%-25.5%), 13.8% (95% CI, 11.7%-15.8%), and 9.6% (95% CI, 7.3%-11.8%), respectively. Those with both a high genetic risk and an inadequate Life's Simple 7 experienced the highest LTRS: 24.8% (95% CI, 22.0%-27.6%). Across all polygenic risk score categories, those with an optimal Life's Simple 7 had a ≈30% to 43% lower LTRS than those with an inadequate Life's Simple 7. This corresponded to almost 6 additional years lived free of stroke. Conclusions The LTRS varies by levels of polygenic risk and cardiovascular health. Maintaining an optimal cardiovascular health can partially offset a high genetic risk, emphasizing the importance of modifiable risk factors and illustrating the potential of personalizing genetic risk information to motivate lifestyle changes for stroke prevention.


Subject(s)
Cardiovascular Diseases , Stroke , Adult , American Heart Association , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Female , Humans , Incidence , Life Style , Male , Middle Aged , Risk Factors , Stroke/epidemiology , Stroke/genetics , United States/epidemiology
16.
Commun Biol ; 5(1): 580, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697829

ABSTRACT

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Creatinine , Diabetic Nephropathies/genetics , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney
17.
Kidney Int ; 102(3): 624-639, 2022 09.
Article in English | MEDLINE | ID: mdl-35716955

ABSTRACT

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.


Subject(s)
N-Acetylgalactosaminyltransferases , Renal Insufficiency, Chronic , Renal Insufficiency , Cross-Sectional Studies , Genetic Loci , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Humans , Kidney , Longitudinal Studies , N-Acetylgalactosaminyltransferases/genetics , Renal Insufficiency/genetics
18.
Neurology ; 2022 May 25.
Article in English | MEDLINE | ID: mdl-35613930

ABSTRACT

BACKGROUND: and ObjectivesHigher scores in Life's Simple 7 (LS7), a metric for cardiovascular and brain health, have been associated with lower risk of dementia. It is uncertain whether this association holds among those with high genetic risk of dementia. Our objective is to evaluate the extent that LS7 may offset dementia risk across the range of genetic risk.Methods PARTICIPANTS: in the Atherosclerosis Risk in Communities (ARIC) Study were followed from 1987-89 to 2019. We derived midlife LS7 scores and generated genetic risk scores (GRS) using genome-wide summary statistics of Alzheimer's Disease, which have been used to study the genetic risk for dementia. Incident dementia was ascertained based on the criteria of the National Institute on Aging-Alzheimer's Association workgroups and Diagnostic and Statistical Manual of Mental Disorders. The associations of the GRS and LS7 with incident dementia were evaluated using Cox regression. RESULTS: This study included 8,823 European Americans (EA) and 2,738 African Americans (AA) (mean age at baseline: 54). We observed 1,603 cases of dementia among EA and 631 among AA (median follow-up: 26.2 years). Higher GRS were associated with higher risk of dementia (EA, hazard ratio [HR] per standard deviation [SD] 1.44, 95% confidence interval [CI]: 1.37, 1.51; AA, HR 1.26, 95% CI: 1.16, 1.36). Among EA, higher LS7 scores were consistently associated with lower risk of dementia across quintiles of GRS, including the highest quintile (HR per point 0.91, 95% CI: 0.87, 0.96). Among AA, the associations between LS7 and incident dementia within stratum of GRS had the same direction as among EA, though wide confidence intervals and smaller sample sizes limited reliable inferences. CONCLUSIONS: Across strata of GRS, higher midlife LS7 scores were associated with lower risk of dementia. Larger sample sizes from diverse populations are needed to obtain more reliable estimates of the effects of modifiable health factors on dementia risk within genetic risk stratum in each ancestry group.

19.
Nat Genet ; 54(5): 593-602, 2022 05.
Article in English | MEDLINE | ID: mdl-35501419

ABSTRACT

Improved understanding of genetic regulation of the proteome can facilitate identification of the causal mechanisms for complex traits. We analyzed data on 4,657 plasma proteins from 7,213 European American (EA) and 1,871 African American (AA) individuals from the Atherosclerosis Risk in Communities study, and further replicated findings on 467 AA individuals from the African American Study of Kidney Disease and Hypertension study. Here, we identified 2,004 proteins in EA and 1,618 in AA, with most overlapping, which showed associations with common variants in cis-regions. Availability of AA samples led to smaller credible sets and notable number of population-specific cis-protein quantitative trait loci. Elastic Net produced powerful models for protein prediction in both populations. An application of proteome-wide association studies to serum urate and gout implicated several proteins, including IL1RN, revealing the promise of the drug anakinra to treat acute gout flares. Our study demonstrates the value of large and diverse ancestry study to investigate the genetic mechanisms of molecular phenotypes and their relationship with complex traits.


Subject(s)
Gout , Proteome , Genetic Predisposition to Disease , Genome-Wide Association Study , Gout/genetics , Humans , Polymorphism, Single Nucleotide , Proteome/genetics
20.
Clin J Am Soc Nephrol ; 17(5): 684-692, 2022 05.
Article in English | MEDLINE | ID: mdl-35474272

ABSTRACT

BACKGROUND AND OBJECTIVES: The APOL1 risk variants (G1 and G2) are associated with kidney disease among Black adults, but the clinical presentation is heterogeneous. In mouse models and cell systems, increased gene expression of G1 and G2 confers cytotoxicity. How APOL1 risk variants relate to the circulating proteome warrants further investigation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Among 461 African American Study of Kidney Disease and Hypertension (AASK) participants (mean age: 54 years; 41% women; mean GFR: 46 ml/min per 1.73 m2), we evaluated associations of APOL1 risk variants with 6790 serum proteins (measured via SOMAscan) using linear regression models. Covariates included age, sex, percentage of European ancestry, and protein principal components 1-5. Associated proteins were then evaluated as mediators of APOL1-associated risk for kidney failure. Findings were replicated among 875 Atherosclerosis Risk in Communities (ARIC) study Black participants (mean age: 75 years; 66% women; mean eGFR: 67 ml/min per 1.73 m2). RESULTS: In the AASK study, having two (versus zero or one) APOL1 risk alleles was associated with lower serum levels of APOL1 (P=3.11E-13; P=3.12E-06 [two aptamers]), APOL2 (P=1.45E-10), CLSTN2 (P=2.66E-06), MMP-2 (P=2.96E-06), SPOCK2 (P=2.57E-05), and TIMP-2 (P=2.98E-05) proteins. In the ARIC study, APOL1 risk alleles were associated with APOL1 (P=1.28E-11); MMP-2 (P=0.004) and TIMP-2 (P=0.007) were associated only in an additive model, and APOL2 was not available. APOL1 high-risk status was associated with a 1.6-fold greater risk of kidney failure in the AASK study; none of the identified proteins mediated this association. APOL1 protein levels were not associated with kidney failure in either cohort. CONCLUSIONS: APOL1 risk variants were strongly associated with lower circulating levels of APOL1 and other proteins, but none mediated the APOL1-associated risk for kidney failure. APOL1 protein level was also not associated with kidney failure.


Subject(s)
Apolipoprotein L1 , Renal Insufficiency, Chronic , Animals , Apolipoprotein L1/genetics , Creatinine , Female , Genetic Predisposition to Disease , Genotype , Humans , Kidney , Male , Matrix Metalloproteinase 2/genetics , Mice , Proteoglycans/genetics , Proteomics , Risk Factors , Tissue Inhibitor of Metalloproteinase-2
SELECTION OF CITATIONS
SEARCH DETAIL