Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662379

ABSTRACT

Alternative cleavage and polyadenylation (APA) is a gene regulatory mechanism used by cells under stress to upregulate proteostasis-promoting transcripts, but how cells achieve this remains poorly understood. Previously, we elucidated a DNA methylation-regulated APA mechanism, in which gene body DNA methylation enhances distal poly(A) isoform expression by blocking CTCF binding and chromatin loop formation at APA control regions. We hypothesized that DNA methylation-regulated APA is one mechanism cells employ to induce proteostasis-promoting poly(A) isoforms. At the DNAJB6 co-chaperone gene locus, acute heat shock resulted in binding of stress response transcription factors HSF1, ATF6, and YY1 at the APA control region and an increase in the expression of the proximal poly(A) isoform known to prevent protein aggregation. Furthermore, TET1 was recruited to rapidly demethylate DNA, facilitating CTCF binding and chromatin loop formation, thereby reinforcing preferential proximal poly(A) isoform expression. As cells recovered, the transcription factors vacated the APA control region, and DNMT1 was recruited to remethylate the region. This process resolved chromatin looping and reset the poly(A) isoform expression pattern. Our findings unveil an epigenetic mechanism enabling cells to dynamically modulate poly(A) isoforms in response to stress while shedding light on the interplay between DNA methylation, transcription factors, and chromatin looping.

2.
STAR Protoc ; 4(1): 102047, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853708

ABSTRACT

There is a wealth of software that utilizes single-cell RNA-seq (scRNA-seq) data to deconvolve spatial transcriptomic spots, which currently are not yet at single-cell resolution. Here we provide protocols for implementing Seurat and Giotto packages to elucidate cell-type distribution in our example human ureter scRNA-seq dataset. We also describe how to create a stand-alone interactive web application using Seurat libraries to visualize and share our results. For complete details on the use and execution of this protocol, please refer to Fink et al. (2022).1.


Subject(s)
Single-Cell Analysis , Single-Cell Gene Expression Analysis , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Transcriptome
3.
Cancer Res ; 83(6): 814-829, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36638328

ABSTRACT

Disruption of KDM6A, a histone lysine demethylase, is one of the most common somatic alternations in bladder cancer. Insights into how KDM6A mutations affect the epigenetic landscape to promote carcinogenesis could help reveal potential new treatment approaches. Here, we demonstrated that KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and induces a neoplastic state characterized by increased cell proliferation. In bladder cancer cells with intact KDM6A, FOXA1 interacted with KDM6A to activate genes instructing urothelial differentiation. KDM6A-deficient cells displayed simultaneous loss of FOXA1 target binding and genome-wide redistribution of the bZIP transcription factor ATF3, which in turn repressed FOXA1-target genes and activated cell-cycle progression genes. Importantly, ATF3 depletion reversed the cell proliferation phenotype induced by KDM6A deficiency. These data establish that KDM6A loss engenders an epigenetic state that drives tumor growth in an ATF3-dependent manner, creating a potentially targetable molecular vulnerability. SIGNIFICANCE: A gain-of-function epigenetic switch that disrupts differentiation is triggered by inactivating KDM6A mutations in bladder cancer and can serve as a potential target for novel therapies.


Subject(s)
Urinary Bladder Neoplasms , Humans , Cell Differentiation/genetics , Cell Proliferation/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , Histone Demethylases/metabolism , Urinary Bladder Neoplasms/pathology
4.
Dev Cell ; 57(15): 1899-1916.e6, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35914526

ABSTRACT

Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments. Furthermore, we analyze and experimentally validate the importance of the sonic hedgehog (SHH) signaling pathway in adult progenitor cell maintenance. The SHH-expressing basal cells support organoid generation in vitro and accurately predict the differentiation trajectory from basal progenitor cells to terminally differentiated umbrella cells. Our results highlight the essential processes involved in adult ureter tissue homeostasis and provide a blueprint for guiding ureter tissue engineering.


Subject(s)
Ureter , Adult , Cell Differentiation , Hedgehog Proteins/metabolism , Humans , Signal Transduction , Stem Cells , Ureter/metabolism
5.
Nat Rev Mol Cell Biol ; 23(5): 306, 2022 05.
Article in English | MEDLINE | ID: mdl-35217851
6.
STAR Protoc ; 3(4): 101854, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595885

ABSTRACT

Characterizing the cellular heterogeneity of human ureter tissues using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics provides a detailed atlas of cell types, signaling networks, and potential cell-cell cross talk underlying developmental and regenerative pathways. We describe an optimized protocol for generating, cryopreserving, and thawing single-cell suspensions from ureter tissues isolated post-cystectomy for scRNA-seq. In addition, we describe an optimized protocol for cryopreserving human ureter tissues for 10x Genomics Visium spatial gene expression platform. For complete details on the use and execution of this protocol, please refer to Fink et al. (2022).1.


Subject(s)
Transcriptome , Ureter , Humans , Transcriptome/genetics , Ureter/surgery , Cryopreservation , Gene Expression Profiling , Biological Assay
7.
Mol Cell ; 78(4): 752-764.e6, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32333838

ABSTRACT

Dysregulation of DNA methylation and mRNA alternative cleavage and polyadenylation (APA) are both prevalent in cancer and have been studied as independent processes. We discovered a DNA methylation-regulated APA mechanism when we compared genome-wide DNA methylation and polyadenylation site usage between DNA methylation-competent and DNA methylation-deficient cells. Here, we show that removal of DNA methylation enables CTCF binding and recruitment of the cohesin complex, which, in turn, form chromatin loops that promote proximal polyadenylation site usage. In this DNA demethylated context, either deletion of the CTCF binding site or depletion of RAD21 cohesin complex protein can recover distal polyadenylation site usage. Using data from The Cancer Genome Atlas, we authenticated the relationship between DNA methylation and mRNA polyadenylation isoform expression in vivo. This DNA methylation-regulated APA mechanism demonstrates how aberrant DNA methylation impacts transcriptome diversity and highlights the potential sequelae of global DNA methylation inhibition as a cancer treatment.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Methylation , Genome, Human , Polyadenylation , Transcriptome , Binding Sites , CCCTC-Binding Factor/genetics , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HCT116 Cells , Humans , Transcription, Genetic , Cohesins
8.
Br J Cancer ; 119(10): 1267-1277, 2018 11.
Article in English | MEDLINE | ID: mdl-30318507

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a heterogeneous disease with distinct clinical subsets based on underlying genetic and epigenetic changes. DNA hypermethylation yields a unique CRC subset with a distinct phenotype and clinical behaviour, but this oncogenic pathway is not fully characterised. This study identifies and characterises miR-1247 as a novel tumour suppressor microRNA in methylated human colon cancers. METHOD: Tumour samples from patients with hypermethylated and non-methylated colon cancer and cell lines were evaluated for miR-1247 expression and function. A murine subcutaneous xenograft model was used for in vivo functional studies. RESULTS: miR-1247 was methylated and underexpressed in methylator colon cancers. Overexpression of miR-1247 significantly inhibited cell proliferation, decreased tumour cell motility, induced apoptosis, and mitigated tumour formation capacity both in vivo and in vitro. Pharmacologic demethylation increased miR-1247 expression and produced similar anti-tumour activities. Mechanistic investigations revealed that MYCBP2, a member of the c-myc oncogene family, is a direct functional target of miR-1247. Furthermore, in CRC patients, MYCBP2 protein levels are associated with miR-1247 levels and survival. CONCLUSIONS: miR-1247 acts as a tumour suppressor by inhibiting MYCBP2 in methylator colon cancer. The MYCBP2/c-myc axis may underlie the anti-tumour activities of miR-1247 and is a potential therapeutic target via demethylation agents.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Colonic Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Genes, Tumor Suppressor , MicroRNAs/genetics , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Heterografts , Humans , Mice , Mice, Nude
9.
Proc Natl Acad Sci U S A ; 114(38): 10190-10195, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874534

ABSTRACT

Dysregulated Foxp3+ Treg functions result in uncontrolled immune activation and autoimmunity. Therefore, identifying cellular factors modulating Treg functions is an area of great importance. Here, using Treg-specific Il27ra-/- mice, we report that IL-27 signaling in Foxp3+ Tregs is essential for Tregs to control autoimmune inflammation in the central nervous system (CNS). Following experimental autoimmune encephalomyelitis (EAE) induction, Treg-specific Il27ra-/- mice develop more severe EAE. Consistent with the severe disease, the numbers of IFNγ- and IL-17-producing CD4 T cells infiltrating the CNS tissues are greater in these mice. Treg accumulation in the inflamed CNS tissues is not affected by the lack of IL-27 signaling in Tregs, suggesting a functional defect of Il27ra-/- Tregs. IL-10 production by conventional CD4 T cells and their CNS accumulation are rather elevated in Treg-specific Il27ra-/- mice. Analysis with Treg fate-mapping reporter mice further demonstrates that IL-27 signaling in Tregs may control stability of Foxp3 expression. Finally, systemic administration of recombinant IL-27 in Treg-specific Il27ra-/- mice fails to ameliorate the disease even in the presence of IL-27-responsive conventional CD4 T cells. These findings uncover a previously unknown role of IL-27 in regulating Treg function to control autoimmune inflammation.


Subject(s)
Autoimmune Diseases/immunology , Encephalomyelitis/immunology , Receptors, Cytokine/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Autoimmune Diseases/drug therapy , Central Nervous System/immunology , Drug Evaluation, Preclinical , Encephalomyelitis/drug therapy , Forkhead Transcription Factors/metabolism , Interleukins/metabolism , Interleukins/therapeutic use , Mice, Transgenic , Receptors, Cytokine/genetics , Receptors, Interleukin
10.
Endocr Relat Cancer ; 23(11): P33-P35, 2016 11.
Article in English | MEDLINE | ID: mdl-27605445
11.
Endocr Relat Cancer ; 23(11): T169-T178, 2016 11.
Article in English | MEDLINE | ID: mdl-27605446

ABSTRACT

Prostate cancer is one of the most common malignancies in men worldwide. Current clinical screening ensures that most prostate cancers are diagnosed while still organ confined, but disease outcome is highly variable. Thus, a better understanding of the molecular features contributing to prostate cancer aggressiveness is being sought. For many cancers, aberrant genome-wide patterns of cytosine DNA methylation in CpG dinucleotides distinguish tumor from normal tissue and contribute to disease progression by altering the transcriptome. In prostate cancer, recent genomic studies identified cancer and high grade-specific differential DNA methylation in gene promoters, gene bodies, gene 3' ends and at distal regulatory elements. Using examples from developmental and disease systems, we will discuss how DNA methylation in each of these genomic contexts can contribute to transcriptome diversity by modulating transcription initiation, alternative transcription start site selection, alternative pre-mRNA splicing and alternative polyadenylation. Alternative transcripts from the same gene often exhibit altered protein-coding potential, translatability, stability and/or localization. All of these can have functional consequences in cells. In future work, it will be important to determine if DNA methylation abnormalities in prostate cancer modify the transcriptome through some or all of these mechanisms and if these DNA methylation-mediated transcriptome alterations impact prostate tumorigenesis and aggressiveness.


Subject(s)
DNA Methylation/physiology , Prostatic Neoplasms/genetics , Animals , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , Male , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcriptome/physiology
12.
Nucleic Acids Res ; 44(12): 5550-6, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27257071

ABSTRACT

Bioinformatic analysis often produces large sets of genomic ranges that can be difficult to interpret in the absence of genomic context. Goldmine annotates genomic ranges from any source with gene model and feature contexts to facilitate global descriptions and candidate loci discovery. We demonstrate the value of genomic context by using Goldmine to elucidate context dynamics in transcription factor binding and to reveal differentially methylated regions (DMRs) with context-specific functional correlations. The open source R package and documentation for Goldmine are available at http://jeffbhasin.github.io/goldmine.


Subject(s)
Computational Biology/methods , DNA Methylation/genetics , Genomics/methods , Software , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation/methods , Protein Binding/genetics
13.
Clin Epigenetics ; 8: 30, 2016.
Article in English | MEDLINE | ID: mdl-26973718

ABSTRACT

BACKGROUND: Fibrosis of the intestine is a common and poorly understood complication of Crohn's disease (CD) characterized by excessive deposition of extracellular matrix and accompanied by narrowing and obstruction of the gut lumen. Defining the molecular characteristics of this fibrotic disorder is a vital step in the development of specific prediction, prevention, and treatment strategies. Previous epigenetic studies indicate that alterations in DNA methylation could explain the mechanism by which mesenchymal cells adopt the requisite pro-fibrotic phenotype that promotes fibrosis progression. However, to date, genome-wide analysis of the DNA methylome of any type of human fibrosis is lacking. We employed an unbiased approach using deep sequencing to define the DNA methylome and transcriptome of purified fibrotic human intestinal fibroblasts (HIF) from the colons of patients with fibrostenotic CD. RESULTS: When compared with normal fibroblasts, we found that the majority of differential DNA methylation was within introns and intergenic regions and not associated with CpG islands. Only a low percentage occurred in the promoters and exons of genes. Integration of the DNA methylome and transcriptome identified regions in three genes that inversely correlated with gene expression: wingless-type mouse mammary tumor virus integration site family, member 2B (WNT2B) and two eicosanoid synthesis pathway enzymes (prostacyclin synthase and prostaglandin D2 synthase). These findings were independently validated by RT-PCR and bisulfite sequencing. Network analysis of the data also identified candidate molecular interactions relevant to fibrosis pathology. CONCLUSIONS: Our definition of a genome-wide fibrosis-specific DNA methylome provides new gene networks and epigenetic states by which to understand mechanisms of pathological gene expression that lead to fibrosis. Our data also provide a basis for development of new fibrosis-specific therapies, as genes dysregulated in fibrotic Crohn's disease, following functional validation, can serve as new therapeutic targets.


Subject(s)
Crohn Disease/genetics , DNA Methylation/genetics , CpG Islands/genetics , Crohn Disease/pathology , Cytochrome P-450 Enzyme System/genetics , Fibroblasts/pathology , Fibrosis , Gene Expression/genetics , Genome-Wide Association Study , Glycoproteins/genetics , Humans , Promoter Regions, Genetic , Transcriptome/genetics , Wnt Proteins/genetics
14.
Nucleic Acids Res ; 44(1): 106-16, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26673711

ABSTRACT

DNA methylation differences capture substantial information about the molecular and gene-regulatory states among biological subtypes. Enrichment-based next generation sequencing methods such as MBD-isolated genome sequencing (MiGS) and MeDIP-seq are appealing for studying DNA methylation genome-wide in order to distinguish between biological subtypes. However, current analytic tools do not provide optimal features for analyzing three-group or larger study designs. MethylAction addresses this need by detecting all possible patterns of statistically significant hyper- and hypo- methylation in comparisons involving any number of groups. Crucially, significance is established at the level of differentially methylated regions (DMRs), and bootstrapping determines false discovery rates (FDRs) associated with each pattern. We demonstrate this functionality in a four-group comparison among benign prostate and three clinical subtypes of prostate cancer and show that the bootstrap FDRs are highly useful in selecting the most robust patterns of DMRs. Compared to existing tools that are limited to two-group comparisons, MethylAction detects more DMRs with strong differential methylation measurements confirmed by whole genome bisulfite sequencing and offers a better balance between precision and recall in cross-cohort comparisons. MethylAction is available as an R package at http://jeffbhasin.github.io/methylaction.


Subject(s)
Computational Biology/methods , DNA Methylation , Epigenomics/methods , Cluster Analysis , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Male , Prostatic Neoplasms/genetics , Reproducibility of Results
15.
Cell Rep ; 13(10): 2135-46, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26628371

ABSTRACT

A critical need in understanding the biology of prostate cancer is characterizing the molecular differences between indolent and aggressive cases. Because DNA methylation can capture the regulatory state of tumors, we analyzed differential methylation patterns genome-wide among benign prostatic tissue and low-grade and high-grade prostate cancer and found extensive, focal hypermethylation regions unique to high-grade disease. These hypermethylation regions occurred not only in the promoters of genes but also in gene bodies and at intergenic regions that are enriched for DNA-protein binding sites. Integration with existing RNA-sequencing (RNA-seq) and survival data revealed regions where DNA methylation correlates with reduced gene expression associated with poor outcome. Regions specific to aggressive disease are proximal to genes with distinct functions from regions shared by indolent and aggressive disease. Our compendium of methylation changes reveals crucial molecular distinctions between indolent and aggressive prostate cancer.


Subject(s)
DNA Methylation/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , CpG Islands/genetics , DNA, Intergenic/genetics , Genome-Wide Association Study , Humans , Male , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , Promoter Regions, Genetic/genetics
16.
Mol Cancer ; 14: 185, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26537004

ABSTRACT

BACKGROUND: BCL-xL is an anti-apoptotic BCL-2 family protein that inhibits apoptosis and is overexpressed in many cancers. We have reported that acquired resistance to the BCL-2 inhibitor ABT-199 (venetoclax) is associated with increased BCL-xL expression. Yet, how BCL-xL mediates chemoresistance in hematopoietic malignancies is not clear. This finding may help in design of new strategies for therapeutic intervention to overcome acquired chemoresistance mediated by BCL-xL. RESULTS: We now show that the increased BCL-xL expression was inversely correlated with that of miR-377 in ABT-199-resistant cells. This finding was also extended to a panel of B-cell lymphoid lines and primary chronic lymphocytic leukemia (CLL) cells. miR-377 suppressed BCL-xL expression by recognizing two binding sites in the BCL-xL 3'-UTR. Mutation of these two miR-377 consensus-binding sites completely abolished its regulatory effect. Expression of a miR-377 mimic downregulated BCL-xL protein expression and significantly increased apoptotic cell death. Expression of a miR-377 inhibitor restored BCL-xL protein expression and limited cell death caused by the hypomethylating agent 5-azacytidine. Thus, miR-377-dependent BCL-xL regulation drives acquired therapeutic resistance to ABT-199. We further show that CLL patients who received a diverse array of chemotherapy regimens also had significantly higher BCL-xL and lower miR377 expression, indicating that exposure to chemotherapy might trigger transcriptional silencing of miR-377, which results in high levels of BCL-xL. Importantly, CLL patients with high BCL-xL/low miR-377 expression had an advanced tumor stage. Moreover, the high BCL-xL expression correlated with short treatment-free survival in 76 CLL patients. miR-377 is located at 14q32 in the DLK1-DIO3 region, which encodes the largest tumor suppressor miRNA cluster in humans. Examination of five additional 14q32 miRNAs revealed that the majority were significantly down-regulated in most CLL patients as well as in ABT-199-resistant cell lines. Remarkably, four of these miRNAs had significantly decreased expression in chemotherapy-treated CLL patients as compared to those untreated. These findings indicate a reduced expression of multiple miRNAs that may reflect a global silencing of this miRNA cluster in therapy-resistant lymphoid cells. CONCLUSIONS: These findings reveal a novel mechanism by which down-regulation of miR-377 increases BCL-xL expression, promoting chemotherapy resistance in B-cell lymphoid malignancies.


Subject(s)
B-Lymphocytes/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , MicroRNAs/metabolism , bcl-X Protein/metabolism , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Mutation , Sulfonamides/pharmacology , bcl-X Protein/antagonists & inhibitors
17.
BMC Bioinformatics ; 16: 220, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-26163275

ABSTRACT

BACKGROUND: Bisulfite sequencing is one of the most widely used technologies in analyzing DNA methylation patterns, which are important in understanding and characterizing the mechanism of DNA methylation and its functions in disease development. Efficient and user-friendly tools are critical in carrying out such analysis on high-throughput bisulfite sequencing data. However, existing tools are either not scalable well, or inadequate in providing visualization and other desirable functionalities. RESULTS: In order to handle ultra large sequencing data and to provide additional functions and features, we have developed BSPAT, a fast online tool for bisulfite sequencing pattern analysis. With a user-friendly web interface, BSPAT seamlessly integrates read mapping/quality control/methylation calling with methylation pattern generation and visualization. BSPAT has the following important features: 1) instead of using multiple/pairwise sequence alignment methods, BSPAT adopts an efficient and widely used sequence mapping tool to provide fast alignment of sequence reads; 2) BSPAT summarizes and visualizes DNA methylation co-occurrence patterns at a single nucleotide level, which provide valuable information in understanding the mechanism and regulation of DNA methylation; 3) based on methylation co-occurrence patterns, BSPAT can automatically detect potential allele-specific methylation (ASM) patterns, which can greatly enhance the detection and analysis of ASM patterns; 4) by linking directly with other popular databases and tools, BSPAT allows users to perform integrative analysis of methylation patterns with other genomic features together within regions of interest. CONCLUSION: By utilizing a real bisulfite sequencing dataset generated from prostate cancer cell lines, we have shown that BSPAT is highly efficient. It has also reported some interesting methylation co-occurrence patterns and a potential allele-specific methylation case. In conclusion, BSPAT is an efficient and convenient tool for high-throughput bisulfite sequencing data analysis that can be broadly used.


Subject(s)
DNA Methylation , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Prostatic Neoplasms/genetics , Sequence Analysis, DNA/methods , Software , Sulfites/chemistry , Base Sequence , Cell Line, Tumor , Humans , Male , Molecular Sequence Data , Sequence Alignment , Sequence Homology, Nucleic Acid
18.
Epigenetics ; 9(7): 1018-30, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24785261

ABSTRACT

Altered expression of microRNA (miRNA) can significantly contribute to cancer development and recent studies have shown that a number of miRNAs may be regulated by DNA methylation. Through a candidate gene approach, we identified MIR941 and MIR1247 to be transcriptionally silenced by DNA hypermethylation in several gastric cancer cell lines. We confirmed that these miRNAs are also densely methylated in primary gastric cancers but not in normal gastric tissues. In addition, we demonstrated that ectopic expression of these two miRNAs in AGS gastric cancer cells resulted in suppression of growth and migration. Furthermore, we tested genes predicted to be the targets of MIR941 and MIR1247 and identified 7 and 6 genes, whose expressions were significantly downregulated by transfection of MIR941 and MIR1247 mimics, respectively, in gastric cancer cell lines. Some of these genes are known to promote proliferation and invasion, phenotypes we observed upon ectopic expression of the two miRNAs. Thus, we examined these candidates more closely and found that downregulation of mRNA corresponded to a decrease in protein levels (observed by western blot). Our study provides unequivocal evidence that MIR941 and MIR1247 are transcriptionally regulated by DNA methylation in gastric cancer and that they have tumor suppressor properties through their inhibition of key cancer promoting genes in this context.


Subject(s)
Adenocarcinoma/pathology , Adenoma/pathology , Cell Movement , Cell Proliferation , Epigenesis, Genetic , MicroRNAs/genetics , RNA, Messenger/metabolism , Stomach Neoplasms/pathology , Adenocarcinoma/metabolism , Adenoma/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , DNA Methylation , Female , Gene Silencing , Humans , Male , MicroRNAs/metabolism , Middle Aged , Stomach Neoplasms/metabolism
19.
Stat Biosci ; 5(1): 179-197, 2013 May.
Article in English | MEDLINE | ID: mdl-23710259

ABSTRACT

Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.

20.
Cancer Res ; 73(3): 1211-8, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23233737

ABSTRACT

Recent epidemiologic data show that low serum cholesterol level as well as statin use is associated with a decreased risk of developing aggressive or advanced prostate cancer, suggesting a role for cholesterol in aggressive prostate cancer development. Intracellular cholesterol promotes prostate cancer progression as a substrate for de novo androgen synthesis and through regulation of AKT signaling. By conducting next-generation sequencing-based DNA methylome analysis, we have discovered marked hypermethylation at the promoter of the major cellular cholesterol efflux transporter, ABCA1, in LNCaP prostate cancer cells. ABCA1 promoter hypermethylation renders the promoter unresponsive to transactivation and leads to elevated cholesterol levels in LNCaP. ABCA1 promoter hypermethylation is enriched in intermediate- to high-grade prostate cancers and not detectable in benign prostate. Remarkably, ABCA1 downregulation is evident in all prostate cancers examined, and expression levels are inversely correlated with Gleason grade. Our results suggest that cancer-specific ABCA1 hypermethylation and loss of protein expression direct high intracellular cholesterol levels and hence contribute to an environment conducive to tumor progression.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Cholesterol/metabolism , Homeostasis , Prostatic Neoplasms/metabolism , ATP Binding Cassette Transporter 1 , Cell Line, Tumor , DNA Methylation , Humans , Male , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...