Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 83(6): 975-983, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32034398

ABSTRACT

ABSTRACT: Flax seed has become an increasingly popular food ingredient because of its nutrient richness as well as potential health benefits. Flax seeds are often ground before consumption, and flax seed cakes are used as animal feed. Aflatoxin production may occur subsequently when the ground seeds are stored in an environment that supports fungal growth. The objectives of this study were to determine the growth of two toxigenic fungi, Aspergillus flavus and A. parasiticus, and to quantify the concentrations of four major aflatoxins (AFB1, AFG1, AGB2, and AFG2) produced by the two fungi on ground flax seeds with water activities (aws) of 0.82, 0.86, 0.90, 0.94, and 0.98, incubated for 30 days at 20, 27, and 35°C. Results of the study showed that A. flavus was able to grow on ground seeds with aw from 0.86 to 0.98 at all three temperatures, and the most rapid growth occurred at aws 0.90 and 0.94 at 27°C. In comparison, A. parasiticus grew on seeds with aw from 0.86 to 0.98 at 27 and 35°C as well as on seeds with aw from 0.86 to 0.90 at 20°C, and the most favorable growth condition was aw from 0.90 to 0.94 at 35°C. A. flavus produced aflatoxins on seeds with aw from 0.90 to 0.94 at 27°C as well as on seeds with aw from 0.86 to 0.98 at 35°C, and the maximum total aflatoxin (298 µg/kg), AFB1 (247 µg/kg), and AFG1 (51 µg/kg) were found on seeds with aw 0.90 at 35°C. In comparison, A. parasiticus produced aflatoxins under a wider range of conditions, which included aw 0.86 at 27 and 35°C, aw 0.90 at 20 and 27°C, aw 0.94 at 27°C, and aw 0.98 at 35°C. The maximum total aflatoxin (364 µg/kg) and maximum AFB1 (324 µg/kg) along with 34 µg/kg AFG1 and 6 µg/kg AFB2 were produced by A. parasiticus on seeds with aw 0.98 incubated at 35°C for 30 days. Linear regression models also indicated that high incubation temperature (35°C) was optimal for overall fungal growth and for formation of high levels of aflatoxin by both fungi. Future studies should also address aflatoxin contamination in flax seed oil.


Subject(s)
Aflatoxins , Flax , Aflatoxin B1 , Aflatoxins/analysis , Animals , Aspergillus , Aspergillus flavus , Seeds/chemistry
2.
J Water Health ; 4(3): 313-20, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17036839

ABSTRACT

We studied the shoreward and seasonal distribution of E. coil and enterococci in sand (at the water table) at two southern Lake Michigan beaches-Dunbar and West Beach (in Indiana). Deep, backshore sand (approximately 20 m inland) was regularly sampled for 15 months during 2002-2003. E. coli counts were not significantly different in samples taken at 5-m intervals from 0-40 m inland (P = 0.25). Neither E. coli nor enterococci mean counts showed any correlation or differences between the two beaches studied. In laboratory experiments, E. coli readily grew in sand supplemented with lake plankton, suggesting that in situ E. coil growth may occur when temperature and natural organic sources are adequate. Of the 114 sand enterococci isolates tested, positive species identification was obtained for only 52 (46%), with E. faecium representing the most dominant species (92%). Genetic characterization by ribotyping revealed no distinct genotypic pattern (s) for E. coli, suggesting that the sand population was rather a mixture of numerous strains (genotypes). These findings indicate that E. coli and enterococci can occur and persist for extended periods in backshore sand at the groundwater table. Although this study was limited to two beaches of southern Lake Michigan, similar findings can be expected at other temperate freshwater beaches. The long-term persistence of these bacteria, perhaps independent of pollution events, complicates their use as indicator organisms. Further, backshore sand at the water table may act as a reservoir for these bacteria and potentially for human pathogens.


Subject(s)
Bathing Beaches , Enterococcus/isolation & purification , Environmental Monitoring , Escherichia coli/isolation & purification , Fresh Water/microbiology , Seasons , Silicon Dioxide/analysis , Bathing Beaches/standards , Cell Proliferation , Enterococcus/classification , Enterococcus/genetics , Escherichia coli/classification , Escherichia coli/cytology , Genetic Variation/genetics , Indiana , Plankton/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...