Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Parasitol ; 260: 108744, 2024 May.
Article in English | MEDLINE | ID: mdl-38513971

ABSTRACT

Suramin was the first effective drug for the treatment of human African sleeping sickness. Structural analogues of the trypanocide have previously been shown to be potent inhibitors of several enzymes. Therefore, four suramin analogues lacking the methyl group on the intermediate rings and with different regiochemistry of the naphthalenetrisulphonic acid groups and the phenyl rings were tested to establish whether they exhibited improved antiproliferative activity against bloodstream forms of Trypanosomes brucei compared to the parent compound. The four analogues exhibited low trypanocidal activity and weak inhibition of the antitrypanosomal activity of suramin in competition experiments. This indicates that the strong trypanocidal activity of suramin is most likely due to the presence of methyl groups on its intermediate rings and to the specific regiochemistry of naphthalenetrisulphonic acid groups. These two structural features are also likely to be important for the inhibition mechanism of suramin because DNA distribution and nucleus/kinetoplast configuration analyses suggest that the analogues inhibit mitosis while suramin inhibits cytokinesis.


Subject(s)
Suramin , Trypanocidal Agents , Trypanosoma brucei brucei , Suramin/pharmacology , Suramin/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Animals , Structure-Activity Relationship , DNA, Protozoan/drug effects , DNA, Kinetoplast/drug effects , Mice , Mitosis/drug effects , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
2.
Bioorg Med Chem ; 92: 117424, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37517101

ABSTRACT

Osteoarthritis is a chronic degenerative joint disease affecting millions of people worldwide, with no disease-modifying drugs currently available to treat the disease. Tissue inhibitor of metalloproteinases 3 (TIMP-3) is a potential therapeutic target in osteoarthritis because of its ability to inhibit the catabolic metalloproteinases that drive joint damage by degrading the cartilage extracellular matrix. We previously found that suramin inhibits cartilage degradation through its ability to block endocytosis and intracellular degradation of TIMP-3 by low-density lipoprotein receptor-related protein 1 (LRP1), and analysis of commercially available suramin analogues indicated the importance of the 1,3,5-trisulfonic acid substitutions on the terminal naphthalene rings for this activity. Here we describe synthesis and structure-activity relationship analysis of additional suramin analogues using ex vivo models of TIMP-3 trafficking and cartilage degradation. This showed that 1,3,6-trisulfonic acid substitution of the terminal naphthalene rings was also effective, and that the protective activity of suramin analogues depended on the presence of a rigid phenyl-containing central region, with para/para substitution of these phenyl rings being most favourable. Truncated analogues lost protective activity. The physicochemical characteristics of suramin and its analogues indicate that approaches such as intra-articular injection would be required to develop them for therapeutic use.


Subject(s)
Osteoarthritis , Tissue Inhibitor of Metalloproteinase-3 , Humans , Tissue Inhibitor of Metalloproteinase-3/metabolism , Tissue Inhibitor of Metalloproteinase-3/pharmacology , Tissue Inhibitor of Metalloproteinase-3/therapeutic use , Suramin/pharmacology , Suramin/metabolism , Suramin/therapeutic use , Cartilage/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Metalloproteases/metabolism , Metalloproteases/pharmacology , Metalloproteases/therapeutic use
3.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562742

ABSTRACT

Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.

4.
Biochim Biophys Acta Gen Subj ; 1863(6): 1050-1058, 2019 06.
Article in English | MEDLINE | ID: mdl-30885647

ABSTRACT

BACKGROUND: Diallylpolysulfanes are the key constituents of garlic oils, known to exhibit broad spectrum anticancer and antimicrobial activity. Studies in vitro, and in mammalian cells, have shown they react, via thiol-polysulfane exchange, with their major low molecular weight thiol, glutathione. However, there are no detailed reports of diallylpolysulfane effects on other common thiol metabolites (cysteine and coenzyme A) or major thiol cofactors (e.g. bacillithiol) that many Gram positive bacteria produce instead of glutathione. METHODS: Diallylpolysulfanes were individually purified then screened for antimicrobial activity against Bacillus subtilis. Their impact on thiol metabolites (bacillithiol, cysteine, coenzyme A, protein thiols allyl thiols//persulfides) in B. subtilis cultures were analysed, by HPLC. RESULTS: Diallylpolysulfane bioactivity increased with increasing chain length up to diallyltetrasulfane, but then plateaued. Within two minutes of treating B. subtilis with diallyltrisulfane or diallyltetrasulfane intracellular bacillithiol levels decreased by ~90%. Cysteine and CoA were also affected but to a lesser degree. This was accompanied by the accumulation of allyl thiol and allyl persulfide. A significant level of protein-S-allylation was also detected. CONCLUSIONS: In addition to the major low molecular weight thiol, diallylpolysulfanes can also have an impact on other thiol metabolites and protein thiols. GENERAL SIGNIFICANCE: This study shows the rapid parallel impact of polysulfanes on different biological thiols inside Bacillus subtilis alongside the concomitant generation of allyl thiols and persulfides.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/metabolism , Cysteine/analogs & derivatives , Garlic/chemistry , Glucosamine/analogs & derivatives , Anti-Bacterial Agents/chemistry , Cysteine/metabolism , Glucosamine/metabolism
5.
mBio ; 9(6)2018 11 27.
Article in English | MEDLINE | ID: mdl-30482829

ABSTRACT

Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.IMPORTANCE Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.


Subject(s)
Biosynthetic Pathways/genetics , Chlorobi/genetics , Chlorobi/metabolism , Cysteine/analogs & derivatives , Glucosamine/analogs & derivatives , Cysteine/chemistry , Cysteine/metabolism , Genome, Bacterial , Glucosamine/chemistry , Glucosamine/metabolism , Molecular Structure , Molecular Weight
6.
Curr Pharmacol Rep ; 4(5): 397-407, 2018.
Article in English | MEDLINE | ID: mdl-30416940

ABSTRACT

PURPOSE OF REVIEW: This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. RECENT FINDINGS: The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5-40 mg/L and for anticancer 20-100 µM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. SUMMARY: Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells.

7.
ACS Omega ; 3(8): 8937-8944, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459026

ABSTRACT

Pyrimidines have always received considerable attention because of their importance in synthesis and elucidation of biochemical roles, in particular that of vitamin B1. Herein, we describe a reaction pathway in a Grignard reagent-based synthesis of substituted pyrimidines. A general synthesis of α-keto-2-methyl-4-amino pyrimidines and their C6-substituted analogues from 4-amino-5-cyano-2-methylpyrimidine is reported. The presence of the nitrile substituent in the starting material also results in an unusual reaction pathway leading to C6-substituted 1,2-dihydropyrimidines. Grignard reagents that give normal pyrimidine products under standard reaction conditions can be switched to give dihydropyrimidines by holding the reaction at 0 °C before quenching.

8.
Antioxidants (Basel) ; 6(1)2016 Dec 30.
Article in English | MEDLINE | ID: mdl-28042817

ABSTRACT

Reactive sulfur species from garlic have long been renowned for their health benefits and antimicrobial properties. In agriculture the subject matter is now gathering momentum in the search for new bio-pesticides to addressing emerging environmental concerns and tighter restrictions on the use of many conventional chemical pesticides. Although the precise modes of action of these garlic-derived bioactives is complex, recent research has provided a number of new insights that deepen our understanding of garlic-derived products, such as garlic extracts and oils. Herein, their activity against various crop-damaging pests is reviewed. In many cases, there seems to be a broad range of activity associated with the sulfur-containing compounds derived from Allium species, which manifests itself in diverse insecticidal, antifungal, and nematicidal activities. These activities open a new understanding to develop this natural chemistry as a "green pesticide".

SELECTION OF CITATIONS
SEARCH DETAIL
...