Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(9): 7535-7552, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728252

ABSTRACT

Adipose tissue regulates metabolic balance, but aging disrupts it, shifting fat from insulin-sensitive subcutaneous to insulin-resistant visceral depots, impacting overall metabolic health. Adipose-derived stem cells (ASCs) are crucial for tissue regeneration, but aging diminishes their stemness and regeneration potential. Our findings reveal that aging is associated with a decrease in subcutaneous adipose tissue mass and an increase in the visceral fat depots mass. Aging is associated with increase in adipose tissue fibrosis but no significant change in adipocyte size was observed with age. Long term caloric restriction failed to prevent fibrotic changes but resulted in significant decrease in adipocytes size. Aged subcutaneous ASCs displayed an increased production of ROS. Using mitochondrial membrane activity as an indicator of stem cell quiescence and senescence, we observed a significant decrease in quiescence ASCs with age exclusively in subcutaneous adipose depot. In addition, aged subcutaneous adipose tissue accumulated more senescent ASCs having defective autophagy activity. However, long-term caloric restriction leads to a reduction in mitochondrial activity in ASCs. Furthermore, caloric restriction prevents the accumulation of senescent cells and helps retain autophagy activity in aging ASCs. These results suggest that caloric restriction and caloric restriction mimetics hold promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using controlled interventions in animals and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established approach for enhancing the stemness of aged stem cells.


Subject(s)
Aging , Caloric Restriction , Cellular Senescence , Stem Cells , Subcutaneous Fat , Cellular Senescence/physiology , Animals , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism , Aging/physiology , Stem Cells/metabolism , Mice , Autophagy/physiology , Male , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Adipocytes/metabolism
2.
iScience ; 26(9): 107660, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37705953

ABSTRACT

Radiation therapy can lead to late radiation-induced skin fibrosis (RISF), causing movement restriction, pain, and organ dysfunction. This study evaluated adipose-derived extracellular matrix (Ad-ECM) as a mitigator of RISF. Female C57BL/6J mice that were irradiated developed fibrosis, which was mitigated by a single local Ad-ECM injection, improving limb movement and reducing epithelium thickness and collagen deposition. Ad-ECM treatment resulted in decreased expression of pro-inflammatory and fibrotic genes, and upregulation of anti-inflammatory cytokines, promoting M2 macrophage polarization. Co-culture of irradiated human fibroblasts with Ad-ECM down-modulated fibrotic gene expression and enhanced bone marrow cell migration. Ad-ECM treatment also increased interleukin (IL)-4, IL-5, and IL-15 expression in endothelial cells, stimulating M2 macrophage polarization and alleviating RISF. Prophylactic use of Ad-ECM showed effectiveness in mitigation. This study suggests Ad-ECM's potential in treating chronic-stage fibrosis.

3.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765109

ABSTRACT

Burn injuries are a significant global health concern, leading to high morbidity and mortality. Deep burn injuries often result in delayed healing and scar formation, necessitating effective treatment options. Regenerative medicine, particularly cell therapy using adipose-derived stem cells (ASCs), has emerged as a promising approach to improving burn wound healing and reducing scarring. Both in vitro and preclinical studies have demonstrated the efficacy of ASCs and the stromal vascular fraction (SVF) in addressing burn wounds. The application of ASCs for burn healing has been studied in various forms, including autologous or allogeneic cells delivered in suspension or within scaffolds in animal burn models. Additionally, ASC-derived non-cellular components, such as conditioned media or exosomes have shown promise. Injection of ASCs and SVF at burn sites have been demonstrated to enhance wound healing by reducing inflammation and promoting angiogenesis, epithelialization, and granulation tissue formation through their paracrine secretome. This review discusses the applications of adipose tissue derivatives in burn injury treatment, encompassing ASC transplantation, as well as the utilization of non-cellular components utilization for therapeutic benefits. The application of ASCs in burn healing in the future will require addressing donor variability, safety, and efficacy for successful clinical application.

4.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631051

ABSTRACT

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by serving as a storage site for excess fat and protecting other organs from the detrimental effects of lipotoxicity. However, the aging process is accompanied by a redistribution of fat, characterized by a decrease in insulin-sensitive subcutaneous adipose depot and an increase in insulin-resistant visceral adipose depot. This age-related alteration in adipose tissue distribution has implications for metabolic health. Adipose-derived stem cells (ASCs) play a vital role in the regeneration of adipose tissue. However, aging negatively impacts the stemness and regenerative potential of ASCs. The accumulation of oxidative stress and mitochondrial dysfunction-associated cellular damage contributes to the decline in stemness observed in aged ASCs. Nicotinamide adenine dinucleotide (NAD+) is a crucial metabolite that is involved in maintaining cellular homeostasis and stemness. The dysregulation of NAD+ levels with age has been associated with metabolic disorders and the loss of stemness. In this study, we aimed to investigate the effects of nicotinamide riboside (NR), a precursor of NAD+, on the stemness of human ASCs in cell culture. Our findings reveal that adipogenesis is accompanied by an increase in mitochondrial activity and the production of reactive oxygen species (ROS). However, treatment with NR leads to a reduction in mitochondrial activity and ROS production in ASCs. Furthermore, NR administration improves the stemness-related genes expression in ASCs and mitigates their propensity for adipocyte differentiation. These results suggest that NR treatment holds promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using animal models and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established drug for enhancing the stemness of aged stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...