Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(18): 4546-4549, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31517927

ABSTRACT

The emission of Cherenkov photons from human and animal tissue can be observed during clinical x-ray or particle beam irradiation. However, imaging this weak emission with the necessary single-photon sensitivity in the clinical room is challenging because of milliwatt-level ambient room lighting and the presence of stray high-energy radiation. In this Letter, we demonstrate, to the best of our knowledge, the first Cherenkov imaging with a time-gated quanta image sensor employing a large single-photon avalanche diode (SPAD) array. Detecting single Cherenkov photons was possible with high photon avalanche gain, fast temporal gating, and moderately high ∼7% photon detection probability. Single-bit digitization and active SPAD quenching enabled stray x-ray noise suppression and photon-noise-limited imaging in a clinical environment. This type of imaging allows the knowledge of location, shape, and surface dose of the therapeutic beam radiotherapy with the stability of solid state-based detection.


Subject(s)
Optical Imaging/instrumentation , Photons , Radiotherapy , Humans , Phantoms, Imaging
2.
Rev Sci Instrum ; 85(11): 114703, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430129

ABSTRACT

We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 µs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

3.
Opt Express ; 21(4): 5086-98, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23482043

ABSTRACT

"Indirect" time-of-flight is one technique to obtain depth-resolved images through active illumination that is becoming more popular in the recent years. Several methods and light timing patterns are used nowadays, aimed at improving measurement precision with smarter algorithms, while using less and less light power. Purpose of this work is to present an indirect time-of-flight imaging camera based on pulsed-light active illumination and a 32 × 32 single-photon avalanche diode array with an improved illumination timing pattern, able to increase depth resolution and to reach single-photon level sensitivity.


Subject(s)
Image Enhancement/instrumentation , Imaging, Three-Dimensional/instrumentation , Lighting/instrumentation , Photometry/instrumentation , Semiconductors , Equipment Design , Equipment Failure Analysis , Photons
4.
Rev Sci Instrum ; 83(7): 074703, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22852708

ABSTRACT

We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB(rms). The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps(rms) (i.e., 36 ps(FWHM)) and in photon timing mode it is still better than 70 ps(FWHM). The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.


Subject(s)
Analog-Digital Conversion , Fluorescence Resonance Energy Transfer/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Time Factors , Equipment Design , Equipment Failure Analysis , Nonlinear Dynamics
5.
Proc SPIE Int Soc Opt Eng ; 8033: 803316, 2011 May 13.
Article in English | MEDLINE | ID: mdl-24729836

ABSTRACT

Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain.

6.
Proc SPIE Int Soc Opt Eng ; 7608(76082D)2010 Jan 24.
Article in English | MEDLINE | ID: mdl-21625288

ABSTRACT

Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements obtained with different novel multipixel single-photon counting detectors.

7.
Opt Express ; 15(6): 2873-87, 2007 Mar 19.
Article in English | MEDLINE | ID: mdl-19532523

ABSTRACT

Traditionally, Single Photon Avalanche Diodes (SPADs) are fabricated using dedicated processes that require additional technological steps when compared to standard CMOS. Instead, this paper presents the design of SPADs that attain good performances, by using a standard high-voltage CMOS process. The detector is monolithically integrated together with an Active Quenching Circuit (iAQC), a counter, and a serial communication interface. This opens the way to the design and fabrication of ultra compact multi-channel single-photon counters.

8.
Opt Lett ; 30(22): 3024-6, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16315709

ABSTRACT

A complete two-dimensional imaging system based on a silicon monolithic array of 60 single-photon counters is presented. The fabricated solid-state array is rugged and operates at low voltages. Detection efficiency is higher than 40% in the visible range, and cross talk among 50 microm pixels is lower than 10(-4). The complete system provides a maximum throughput of 20 kframes/s with truly parallel readout and nanosecond gating, thanks to the use of an integrated active quenching circuit for each pixel of the array. We report optical and electrical characterizations of the whole imaging system.


Subject(s)
Algorithms , Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Photons , Radiometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Video Recording/instrumentation , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Radiation Dosage , Radiometry/methods , Reproducibility of Results , Sensitivity and Specificity , Video Recording/methods
SELECTION OF CITATIONS
SEARCH DETAIL