Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Transl Psychiatry ; 13(1): 240, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400432

ABSTRACT

Here, we investigated the brain functional connectivity (FC) changes following a novel accelerated theta burst stimulation protocol known as Stanford Neuromodulation Therapy (SNT) which demonstrated significant antidepressant efficacy in treatment-resistant depression (TRD). In a sample of 24 patients (12 active and 12 sham), active stimulation was associated with significant pre- and post-treatment modulation of three FC pairs, involving the default mode network (DMN), amygdala, salience network (SN) and striatum. The most robust finding was the SNT effect on amygdala-DMN FC (group*time interaction F(1,22) = 14.89, p < 0.001). This FC change correlated with improvement in depressive symptoms (rho (Spearman) = -0.45, df = 22, p = 0.026). The post-treatment FC pattern showed a change in the direction of the healthy control group and was sustained at the one-month follow-up. These results are consistent with amygdala-DMN connectivity dysfunction as an underlying mechanism of TRD and bring us closer to the goal of developing imaging biomarkers for TMS treatment optimization.Trial registration: ClinicalTrials.gov NCT03068715.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Humans , Depressive Disorder, Major/therapy , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Depressive Disorder, Treatment-Resistant/therapy
2.
J Neurosci Methods ; 392: 109853, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37031764

ABSTRACT

BACKGROUND: Currently, magnetic resonance spectroscopy (MRS) is dependent on the investigative team to manually prescribe, or demarcate, the desired tissue volume-of-interest. The need for a new method to automate precise voxel placements is warranted to improve the utility and interpretability of MRS data. NEW METHOD: We propose and validate robust and real-time methods to automate MRS voxel placement using functionally defined coordinates within the prefrontal cortex. Data were collected and analyzed using two independent prospective studies: 1) two independent imaging days with each consisting of a multi-session sandwich design (MRS data only collected on one of the days determined based on scan time) and 2) a longitudinal design. Participants with fibromyalgia syndrome (N = 50) and major depressive disorder (N = 35) underwent neuroimaging. MRS acquisitions were acquired at 3-tesla. Evaluation of the reproducibility of spatial location and tissue segmentation was assessed for: 1) manual, 2) semi-automated, and 3) automated voxel prescription approaches RESULTS: Variability of voxel grey and white matter tissue composition was reduced using automated placement protocols. Spatially, post- to pre-voxel center-of-gravity distance was reduced and voxel overlap increased significantly across datasets using automated compared to manual procedures COMPARISON WITH EXISTING METHODS: Manual prescription, the current standard in the field, can produce inconsistent data across repeated acquisitions. Using automated voxel placement, we found reduced variability and more consistent voxel placement across multiple acquisitions CONCLUSIONS: These results demonstrate the within subject reliability and reproducibility of a method for reducing variability introduced by spatial inconsistencies during MRS acquisitions. The proposed method is a meaningful advance toward improved consistency of MRS data in neuroscience and can be utilized for multi-session and longitudinal studies.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Prospective Studies , Magnetic Resonance Spectroscopy/methods
3.
Am J Psychiatry ; 177(8): 716-726, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32252538

ABSTRACT

OBJECTIVE: New antidepressant treatments are needed that are effective, rapid acting, safe, and tolerable. Intermittent theta-burst stimulation (iTBS) is a noninvasive brain stimulation treatment that has been approved by the U.S. Food and Drug Administration for treatment-resistant depression. Recent methodological advances suggest that the current iTBS protocol might be improved through 1) treating patients with multiple sessions per day at optimally spaced intervals, 2) applying a higher overall pulse dose of stimulation, and 3) precision targeting of the left dorsolateral prefrontal cortex (DLPFC) to subgenual anterior cingulate cortex (sgACC) circuit. The authors examined the feasibility, tolerability, and preliminary efficacy of Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT), an accelerated, high-dose resting-state functional connectivity MRI (fcMRI)-guided iTBS protocol for treatment-resistant depression. METHODS: Twenty-two participants with treatment-resistant depression received open-label SAINT. fcMRI was used to individually target the region of the left DLPFC most anticorrelated with sgACC in each participant. Fifty iTBS sessions (1,800 pulses per session, 50-minute intersession interval) were delivered as 10 daily sessions over 5 consecutive days at 90% resting motor threshold (adjusted for cortical depth). Neuropsychological testing was conducted before and after SAINT. RESULTS: One participant withdrew, leaving a sample size of 21. Nineteen of 21 participants (90.5%) met remission criteria (defined as a score <11 on the Montgomery-Åsberg Depression Rating Scale). In the intent-to-treat analysis, 19 of 22 participants (86.4%) met remission criteria. Neuropsychological testing demonstrated no negative cognitive side effects. CONCLUSIONS: SAINT, an accelerated, high-dose, iTBS protocol with fcMRI-guided targeting, was well tolerated and safe. Double-blinded sham-controlled trials are needed to confirm the remission rate observed in this initial study.


Subject(s)
Depressive Disorder, Treatment-Resistant , Gyrus Cinguli/physiopathology , Prefrontal Cortex/physiopathology , Transcranial Magnetic Stimulation/methods , Adult , Clinical Protocols , Cognition , Depressive Disorder, Treatment-Resistant/diagnosis , Depressive Disorder, Treatment-Resistant/physiopathology , Depressive Disorder, Treatment-Resistant/therapy , Female , Functional Neuroimaging/methods , Humans , Magnetic Resonance Imaging/methods , Male , Monitoring, Physiologic/methods , Neuropsychological Tests , Psychiatric Status Rating Scales , Remission Induction/methods
4.
J Neurophysiol ; 121(5): 1609-1620, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30785815

ABSTRACT

Motor-evoked potentials (MEPs), elicited by transcranial magnetic stimulation (TMS) over the motor cortex, are reduced during the preparatory period in delayed response tasks. In this study we examined how MEP suppression varies as a function of the anatomical organization of the motor cortex. MEPs were recorded from a left index muscle while participants prepared a hand or leg movement in experiment 1 or prepared an eye or mouth movement in experiment 2. In this manner, we assessed if the level of MEP suppression in a hand muscle varied as a function of the anatomical distance between the agonist for the forthcoming movement and the muscle targeted by TMS. MEP suppression was attenuated when the cued effector was anatomically distant from the hand (e.g., leg or facial movement compared with finger movement). A similar effect was observed in experiment 3 in which MEPs were recorded from a muscle in the leg and the forthcoming movement involved the upper limb or face. These results demonstrate an important constraint on preparatory inhibition: it is sufficiently broad to be manifest in a muscle that is not involved in the task, but it is not global, showing a marked attenuation when the agonist muscle belongs to a different segment of the body. NEW & NOTEWORTHY Using transcranial magnetic stimulation, we examined changes in corticospinal excitability as people prepared to move. Consistent with previous work, we observed a reduction in excitability during the preparatory period, an effect observed in both task-relevant and task-irrelevant muscles. However, this preparatory inhibition is anatomically constrained, attenuated in muscles belonging to a different body segment than the agonist of the forthcoming movement.


Subject(s)
Eye Movements , Hand/physiology , Leg/physiology , Muscle, Skeletal/physiology , Neural Inhibition , Psychomotor Performance , Adolescent , Adult , Evoked Potentials, Motor , Female , Hand/innervation , Humans , Leg/innervation , Male , Mouth/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...