Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Am J Hum Genet ; 111(7): 1243-1251, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996465

ABSTRACT

Population history-focused DNA and ancient DNA (aDNA) research in Africa has dramatically increased in the past decade, enabling increasingly fine-scale investigations into the continent's past. However, while international interest in human genomics research in Africa grows, major structural barriers limit the ability of African scholars to lead and engage in such research and impede local communities from partnering with researchers and benefitting from research outcomes. Because conversations about research on African people and their past are often held outside Africa and exclude African voices, an important step for African DNA and aDNA research is moving these conversations to the continent. In May 2023 we held the DNAirobi workshop in Nairobi, Kenya and here we synthesize what emerged most prominently in our discussions. We propose an ideal vision for population history-focused DNA and aDNA research in Africa in ten years' time and acknowledge that to realize this future, we need to chart a path connecting a series of "landmarks" that represent points of consensus in our discussions. These include effective communication across multiple audiences, reframed relationships and capacity building, and action toward structural changes that support science and beyond. We concluded there is no single path to creating an equitable and self-sustaining research ecosystem, but rather many possible routes linking these landmarks. Here we share our diverse perspectives as geneticists, anthropologists, archaeologists, museum curators, and educators to articulate challenges and opportunities for African DNA and aDNA research and share an initial map toward a more inclusive and equitable future.


Subject(s)
DNA, Ancient , Genetics, Population , Humans , DNA, Ancient/analysis , Africa , Genomics , Black People/genetics
2.
Am J Hum Genet ; 111(5): 927-938, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701745

ABSTRACT

Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.


Subject(s)
Malaria, Falciparum , Telomere , Adult , Female , Humans , Male , Middle Aged , Young Adult , Africa South of the Sahara/epidemiology , Black People/ethnology , Black People/genetics , Endemic Diseases , Leukocytes/metabolism , Malaria, Falciparum/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Sub-Saharan African People , Telomere/genetics , Telomere Homeostasis/genetics , Botswana , Tanzania , Cameroon , Southern African People
3.
Nat Genet ; 56(2): 258-272, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200130

ABSTRACT

Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.


Subject(s)
Albinism, Oculocutaneous , Melanins , Skin Pigmentation , Humans , Skin Pigmentation/genetics , Melanins/genetics , Alleles , Genomics , Pigmentation/genetics , Polymorphism, Single Nucleotide/genetics , Repressor Proteins/genetics
4.
Curr Biol ; 33(22): 4905-4916.e5, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37837965

ABSTRACT

Comparisons of Neanderthal genomes to anatomically modern human (AMH) genomes show a history of Neanderthal-to-AMH introgression stemming from interbreeding after the migration of AMHs from Africa to Eurasia. All non-sub-Saharan African AMHs have genomic regions genetically similar to Neanderthals that descend from this introgression. Regions of the genome with Neanderthal similarities have also been identified in sub-Saharan African populations, but their origins have been unclear. To better understand how these regions are distributed across sub-Saharan Africa, the source of their origin, and what their distribution within the genome tells us about early AMH and Neanderthal evolution, we analyzed a dataset of high-coverage, whole-genome sequences from 180 individuals from 12 diverse sub-Saharan African populations. In sub-Saharan African populations with non-sub-Saharan African ancestry, as much as 1% of their genomes can be attributed to Neanderthal sequence introduced by recent migration, and subsequent admixture, of AMH populations originating from the Levant and North Africa. However, most Neanderthal homologous regions in sub-Saharan African populations originate from migration of AMH populations from Africa to Eurasia ∼250 kya, and subsequent admixture with Neanderthals, resulting in ∼6% AMH ancestry in Neanderthals. These results indicate that there have been multiple migration events of AMHs out of Africa and that Neanderthal and AMH gene flow has been bi-directional. Observing that genomic regions where AMHs show a depletion of Neanderthal introgression are also regions where Neanderthal genomes show a depletion of AMH introgression points to deleterious interactions between introgressed variants and background genomes in both groups-a hallmark of incipient speciation.


Subject(s)
Neanderthals , Humans , Animals , Neanderthals/genetics , Genome, Human , Gene Flow , Genomics , Africa South of the Sahara
6.
Cell ; 186(5): 923-939.e14, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868214

ABSTRACT

We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.


Subject(s)
Acclimatization , Skin Pigmentation , Humans , Whole Genome Sequencing , Population Density , Africa , 3-Phosphoinositide-Dependent Protein Kinases
7.
HLA ; 102(2): 192-205, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36999238

ABSTRACT

HLA allelic variation has been well studied and documented in many parts of the world. However, African populations have been relatively under-represented in studies of HLA variation. We have characterized HLA variation from 489 individuals belonging to 13 ethnically diverse populations from rural communities from the African countries of Botswana, Cameroon, Ethiopia, and Tanzania, known to practice traditional subsistence lifestyles using next generation sequencing (Illumina) and long-reads from Oxford Nanopore Technologies. We identified 342 distinct alleles among the 11 HLA targeted genes: HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1, and -DPB1, with 140 of those alleles containing novel sequences that were submitted to the IPD-IMGT/HLA database. Sixteen of the 140 alleles contained novel content within the exonic regions of the genes, while 110 alleles contained novel intronic variants. Four alleles were found to be recombinants of already described HLA alleles and 10 alleles extended the sequence content of already described alleles. All 140 alleles include complete allelic sequence from the 5' UTR to the 3' UTR that are inclusive of all exons and introns. This report characterizes the HLA allelic variation from these individuals and describes the novel allelic variation present within these specific African populations.


Subject(s)
Genes, MHC Class II , Genomics , Humans , Alleles , Africa South of the Sahara
8.
Genome Biol ; 24(1): 35, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36829244

ABSTRACT

BACKGROUND: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS: We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION: Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.


Subject(s)
East African People , Quantitative Trait Loci , Humans , Chromosome Mapping , Gene Expression , Tanzania , Genetic Variation
9.
Sci Transl Med ; 15(720): eadg4775, 2023 11.
Article in English | MEDLINE | ID: mdl-38190501

ABSTRACT

Clinical trials for central nervous system disorders often enroll patients with unrecognized heterogeneous diseases, leading to costly trials that have high failure rates. Here, we discuss the potential of emerging technologies and datasets to elucidate disease mechanisms and identify biomarkers to improve patient stratification and monitoring of disease progression in clinical trials for neuropsychiatric disorders. Greater efforts must be centered on rigorously standardizing data collection and sharing of methods, datasets, and analytical tools across sectors. To address health care disparities in clinical trials, diversity of genetic ancestries and environmental exposures of research participants and associated biological samples must be prioritized.


Subject(s)
Mental Disorders , Humans , Mental Disorders/therapy , Data Collection , Disease Progression , Environmental Exposure
10.
Am J Hum Genet ; 109(12): 2095-2100, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459976

ABSTRACT

The genotyping of millions of human samples has made it possible to evaluate variants across the human genome for their possible association with risks for numerous diseases and other traits by using genome-wide association studies (GWASs). The associations between phenotype and genotype found in GWASs make possible the construction of polygenic scores (PGSs), which aim to predict a trait or disease outcome in an individual on the basis of their genotype (in the disease case, the term polygenic risk score [PRS] is often used). PGSs have shown promise for studying the biology of complex traits and as a tool for evaluating individual disease risks in clinical settings. Although the quantity and quality of data to compute PGSs are increasing, challenges remain in the technical aspects of developing PGSs and in the ethical and social issues that might arise from their use. This ASHG Guidance emphasizes three major themes for researchers working with or interested in the application of PGSs in their own research: (1) developing diverse research cohorts; (2) fostering robustness in the development, application, and interpretation of PGSs; and (3) improving the communication of PGS results and their implications to broad audiences.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Genetic Research , Genotype , Phenotype
11.
Mol Biol Evol ; 39(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36026493

ABSTRACT

The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.


Subject(s)
Alcohol Dehydrogenase , Alcoholism , Acetaldehyde , Agriculture , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Alcoholism/genetics , Ethanol/metabolism , Ethiopia , Humans , Nucleotides , Selection, Genetic
12.
Proc Natl Acad Sci U S A ; 119(21): e2123000119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35580180

ABSTRACT

Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.


Subject(s)
COVID-19 , Africa , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Variation , Humans , Phenotype , SARS-CoV-2/genetics , Selection, Genetic
13.
Annu Rev Biomed Data Sci ; 5: 321-339, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35576557

ABSTRACT

One goal of genomic medicine is to uncover an individual's genetic risk for disease, which generally requires data connecting genotype to phenotype, as done in genome-wide association studies (GWAS). While there may be clinical promise to employing prediction tools such as polygenic risk scores (PRS), it currently stands that individuals of non-European ancestry may not reap the benefits of genomic medicine because of underrepresentation in large-scale genetics studies. Here, we discuss why this inequity poses a problem for genomic medicine and the reasons for the low transferability of PRS across populations. We also survey the ancestry representation of published GWAS and investigate how estimates of ancestry diversity in GWASparticipants might be biased. We highlight the importance of expanding genetic research in Africa, one of the most underrepresented regions in human genomics research, and discuss issues of ethics, resources, and technology for equitable advancement of genomic medicine.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Genotype , Human Genetics , Humans , Precision Medicine
14.
Trends Genet ; 38(2): 152-168, 2022 02.
Article in English | MEDLINE | ID: mdl-34740451

ABSTRACT

There has been a rapid increase in human genome sequencing in the past two decades, resulting in the identification of millions of previously unknown genetic variants. However, African populations are under-represented in sequencing efforts. Additional sequencing from diverse African populations and the construction of African-specific reference genomes is needed to better characterize the full spectrum of variation in humans. However, sequencing alone is insufficient to address the molecular and cellular mechanisms underlying variable phenotypes and disease risks. Determining functional consequences of genetic variation using multi-omics approaches is a fundamental post-genomic challenge. We discuss approaches to close the knowledge gaps about African genomic diversity and review advances in African integrative genomic studies and their implications for precision medicine.


Subject(s)
Genome, Human , Genomics , Genome, Human/genetics , Humans , Precision Medicine
16.
Res Sq ; 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34341784

ABSTRACT

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection ( ACE2, TMPRSS2, DPP4 , and LY6E ). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2 , we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2 , we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.

17.
J Virol ; 95(21): e0081721, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34406857

ABSTRACT

Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCERedondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.


Subject(s)
DNA Virus Infections/virology , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/metabolism , Mouth/virology , Respiratory System/virology , Saliva/virology , Africa/epidemiology , Biodiversity , Critical Illness , DNA Virus Infections/epidemiology , DNA-Binding Proteins/metabolism , Evolution, Molecular , Genome, Viral , Humans , Metagenomics , Periodontitis/virology , Phylogeny , Prevalence , Rural Population , United States/epidemiology , Viral Proteins/metabolism
18.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233163

ABSTRACT

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Subject(s)
Microphthalmia-Associated Transcription Factor/metabolism , NADP Transhydrogenases/metabolism , Skin Pigmentation/radiation effects , Ultraviolet Rays , Animals , Cell Line , Cohort Studies , Cyclic AMP/metabolism , DNA Damage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Genetic Predisposition to Disease , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanosomes/drug effects , Melanosomes/metabolism , Melanosomes/radiation effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , NADP Transhydrogenases/antagonists & inhibitors , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Polymorphism, Single Nucleotide/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Proteolysis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/genetics , Ubiquitin/metabolism , Zebrafish
19.
medRxiv ; 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34230933

ABSTRACT

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (ACE2, TMPRSS2, DPP4, and LY6E). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2, we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...