Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202406669, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842919

ABSTRACT

The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5-, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n- (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected - both for dimension and architecture - POVs, not observed in aqueous solution.

2.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38270175

ABSTRACT

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , DNA, B-Form , Cisplatin/chemistry , Transcription Factor AP-1/metabolism , Antineoplastic Agents/chemistry , DNA/chemistry
3.
Angew Chem Int Ed Engl ; 62(50): e202310655, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37768728

ABSTRACT

High-resolution crystal structures of lysozyme in the presence of the potential drug VIV O(acetylacetonato)2 under two different experimental conditions have been solved. The crystallographic study reveals the loss of the ligands, the oxidation of VIV to VV and the subsequent formation of adducts of the protein with two different polyoxidovanadates: [V4 O12 ]4- , which interacts with lysozyme non-covalently, and the unprecedented [V20 O54 (NO3 )]n- , which is covalenty bound to the side chain of an aspartate residue of symmetry related molecules.


Subject(s)
Muramidase , Proteins , Muramidase/chemistry , Oxidation-Reduction , Vanadium/chemistry , Ligands
4.
Dalton Trans ; 52(21): 6992-6996, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37199244

ABSTRACT

The reaction of the cytotoxic compound dirhodium tetraacetate with a B-DNA double helical dodecamer was studied by X-ray crystallography and mass spectrometry. The structure of the dirhodium/DNA adduct reveals a dimetallic center binding to an adenine via axial coordination. Complementary information has been gained through ESI MS measurements. Comparison between the present data and those previously obtained for cisplatin indicates that the two metallodrugs react with this DNA dodecamer in a significantly different fashion.


Subject(s)
DNA, B-Form , Crystallography, X-Ray , DNA/chemistry , Mass Spectrometry
5.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768690

ABSTRACT

This study describes new platinum(II) cationic five-coordinate complexes (1-R,R') of the formula [PtR(NHC)(dmphen)(ethene)]CF3SO3 (dmphen = 2,9-dimethyl-1,10-phenanthroline), containing in their axial positions an alkyl group R (methyl or octyl) and an imidazole-based NHC-carbene ligand with a substituent R' of variable length (methyl or octyl) on one nitrogen atom. The Pt-carbene bond is stable both in DMSO and in aqueous solvents. In DMSO, a gradual substitution of dmphen and ethene is observed, with the formation of a square planar solvated species. Octanol/water partitioning studies have revealed the order of hydrophobicity of the complexes (1-Oct,Me > 1-Oct,Oct > 1-Me,Oct > 1-Me,Me). Their biological activity was investigated against two pairs of cancer and non-cancer cell lines. The tested drugs were internalized in cancer cells and able to activate the apoptotic pathway. The reactivity of 1-Me,Me with DNA and protein model systems was also studied using UV-vis absorption spectroscopy, fluorescence, and X-ray crystallography. The compound binds DNA and interacts in various ways with the model protein lysozyme. Remarkably, structural data revealed that the complex can bind lysozyme via non-covalent interactions, retaining its five-coordinate geometry.


Subject(s)
Antineoplastic Agents , Muramidase , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Crystallography, X-Ray , Dimethyl Sulfoxide , DNA , Hydrophobic and Hydrophilic Interactions , Platinum Compounds/chemistry , Platinum Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...