Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Infect Dis ; 228(Suppl 7): S522-S535, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37723997

ABSTRACT

Ebola virus (EBOV) disease is marked by rapid virus replication and spread. EBOV enters the cell by macropinocytosis and replicates in the cytoplasm, and nascent virions egress from the cell surface to infect neighboring cells. Here, we show that EBOV uses an alternate route to disseminate: tunneling nanotubes (TNTs). TNTs, an actin-based long-range intercellular communication system, allows for direct exchange of cytosolic constituents between cells. Using live, scanning electron, and high-resolution quantitative 3-dimensional microscopy, we show that EBOV infection of primary human cells results in the enhanced formation of TNTs containing viral nucleocapsids. TNTs promote the intercellular transfer of nucleocapsids in the absence of live virus, and virus could replicate in cells devoid of entry factors after initial stall. Our studies suggest an alternate model of EBOV dissemination within the host, laying the groundwork for further investigations into the pathogenesis of filoviruses and, importantly, stimulating new areas of antiviral design.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Nanotubes , Humans , Cell Communication
2.
J Vis Exp ; (193)2023 03 24.
Article in English | MEDLINE | ID: mdl-37036210

ABSTRACT

Flow cytometry can rapidly characterize and quantify diverse cell populations based on fluorescence measurements. The cells are first stained with one or more fluorescent reagents, each functionalized with a different fluorescent molecule (fluorophore) that binds to cells selectively based on their phenotypic characteristics, such as cell surface antigen expression. The intensity of fluorescence from each reagent bound to cells can be measured on the flow cytometer using channels that detect a specified range of wavelengths. When multiple fluorophores are used, the light from individual fluorophores often spills over into undesired detection channels, which requires a correction to the fluorescence intensity data in a process called compensation. Compensation control particles, typically polymer beads bound to a single fluorophore, are needed for each fluorophore used in a cell labeling experiment. Data from compensation particles from the flow cytometer are used to apply a correction to the fluorescence intensity measurements. This protocol describes the preparation and purification of polystyrene compensation beads covalently functionalized with the fluorescent reagent meso-tetra(4-carboxyphenyl) porphine (TCPP) and their application in flow cytometry compensation. In this work, amine-functionalized polystyrene beads were treated with TCPP and the amide coupling reagent EDC (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride) at pH 6 and at room temperature for 16 h with agitation. The TCPP beads were isolated by centrifugation and resuspended in a pH 7 buffer for storage. TCPP-related particulates were observed as a byproduct. The number of these particulates could be reduced using an optional filtration protocol. The resultant TCPP beads were successfully used on a flow cytometer for compensation in experiments with human sputum cells labeled with multiple fluorophores. The TCPP beads proved stable following storage in a refrigerator for 300 days.


Subject(s)
Polystyrenes , Porphyrins , Humans , Flow Cytometry/methods , Fluorescent Dyes/chemistry
3.
Biomolecules ; 12(8)2022 08 02.
Article in English | MEDLINE | ID: mdl-36008963

ABSTRACT

Alternative splicing allows the synthesis of different protein variants starting from a single gene. Human Beclin 1 (BECN1) is a key autophagy regulator that acts as haploinsufficient tumor suppressor since its decreased expression correlates with tumorigenesis and poor prognosis in cancer patients. Recent studies show that BECN1 mRNA undergoes alternative splicing. Here, we report on the isolation and molecular and functional characterization of three BECN1 transcript variants (named BECN1-α, -ß and -γ) in human cancer cells. In ovarian cancer NIHOVCAR3, these splicing variants were found along with the canonical wild-type. BECN1-α lacks 143 nucleotides at its C-terminus and corresponds to a variant previously described. BECN1-ß and -γ lack the BCL2 homology 3 domain and other regions at their C-termini. Following overexpression in breast cancer cells MDA-MB231, we found that BECN1-α stimulates autophagy. Specifically, BECN1-α binds to Parkin and stimulates mitophagy. On the contrary, BECN1-ß reduces autophagy with a dominant negative effect over the endogenous wild-type isoform. BECN1-γ maintains its ability to interact with the vacuolar protein sorting 34 and only has a slight effect on autophagy. It is possible that cancer cells utilize the alternative splicing of BECN1 for modulating autophagy and mitophagy in response to environmental stresses.


Subject(s)
Apoptosis Regulatory Proteins , Beclin-1/metabolism , Neoplasms , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Autophagy , Beclin-1/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Isoforms/genetics
4.
Stem Cells Dev ; 31(17-18): 507-520, 2022 09.
Article in English | MEDLINE | ID: mdl-35592997

ABSTRACT

During embryonic development, the olfactory sensory neurons (OSNs) and the gonadotropic-releasing hormone neurons (GNRHNs) migrate from the early nasal cavity, known as the olfactory placode, to the brain. Defects in the development of OSNs and GNRHNs result in neurodevelopmental disorders such as anosmia and congenital hypogonadotropic hypogonadism, respectively. Treatments do not restore the defective neurons in these disorders, and as a result, patients have a diminished sense of smell or a gonadotropin hormone deficiency. Human pluripotent stem cells (hPSCs) can produce any cell type in the body; therefore, they are an invaluable tool for cell replacement therapies. Transplantation of olfactory placode progenitors, derived from hPSCs, is a promising therapeutic to replace OSNs and GNRHNs and restore tissue function. Protocols to generate olfactory placode progenitors are limited, and thus, we describe, in this study, a novel in vitro model for olfactory placode differentiation in hPSCs, which is capable of producing both OSNs and GNRHNs. Our study investigates the major developmental signaling factors that recapitulate the embryonic development of the olfactory tissue. We demonstrate that induction of olfactory placode in hPSCs requires bone morphogenetic protein inhibition, wingless/integrated protein inhibition, retinoic acid inhibition, transforming growth factor alpha activation, and fibroblast growth factor 8 activation. We further show that the protocol transitions hPSCs through the anterior pan-placode ectoderm and neural ectoderm regions in early development while preventing neural crest and non-neural ectoderm regions. Finally, we demonstrate production of OSNs and GNRHNs by day 30 of differentiation. Our study is the first to report on OSN differentiation in hPSCs.


Subject(s)
Ectoderm , Pluripotent Stem Cells , Hormones/metabolism , Humans , Neural Crest , Neurons/metabolism
5.
FASEB J ; 36(1): e22062, 2022 01.
Article in English | MEDLINE | ID: mdl-34918377

ABSTRACT

Mitochondrial dysfunction or loss of homeostasis is a central hallmark of many human diseases. Mitochondrial homeostasis is mediated by multiple quality control mechanisms including mitophagy, a form of selective autophagy that recycles terminally ill or dysfunctional mitochondria in order to preserve mitochondrial integrity. Our prior studies have shown that members of the insulin-like growth factor (IGF) family localize to the mitochondria and may play important roles in mediating mitochondrial health in the corneal epithelium, an integral tissue that is required for the maintenance of optical transparency and vision. Importantly, the IGF-binding protein-3, IGFBP-3, is secreted by corneal epithelial cells in response to stress and functions to mediate intracellular receptor trafficking in this cell type. In this study, we demonstrate a novel role for IGFBP-3 in mitochondrial homeostasis through regulation of the short isoform (s)BNIP3L/NIX mitophagy receptor in corneal epithelial cells and extend this finding to non-ocular epithelial cells. We further show that IGFBP-3-mediated control of mitochondrial homeostasis is associated with alterations in lamellar cristae morphology and mitochondrial dynamics. Interestingly, both loss and gain of function of IGFBP-3 drive an increase in mitochondrial respiration. This increase in respiration is associated with nuclear accumulation of IGFBP-3. Taken together, these findings support a novel role for IGFBP-3 as a key mediator of mitochondrial health in mucosal epithelia through the regulation of mitophagy and mitochondrial morphology.


Subject(s)
Epithelium, Corneal/metabolism , Homeostasis , Insulin-Like Growth Factor Binding Protein 3/metabolism , Mitochondria/metabolism , Mitophagy , Cell Line, Transformed , Humans , Insulin-Like Growth Factor Binding Protein 3/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mucous Membrane/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
6.
Invest Ophthalmol Vis Sci ; 62(7): 11, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34100890

ABSTRACT

Purpose: The insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional secretory protein with well-known roles in cell growth and survival. Data in our laboratory suggest that IGFBP-3 may be functioning as a stress response protein in the corneal epithelium. The purpose of this study is to determine the role of IGFBP-3 in mediating the corneal epithelial cell stress response to hyperosmolarity, a well-known pathophysiological event in the development of dry eye disease. Methods: Telomerase-immortalized human corneal epithelial (hTCEpi) cells were used in this study. Cells were cultured in serum-free media with (growth) or without (basal) supplements. Hyperosmolarity was achieved by increasing salt concentrations to 450 and 500 mOsM. Metabolic and mitochondrial changes were assessed using Seahorse metabolic flux analysis and assays for mitochondrial calcium, polarization and mtDNA. Levels of IGFBP-3 and inflammatory mediators were quantified using ELISA. Cytotoxicity was evaluated using a lactate dehydrogenase assay. In select experiments, cells were cotreated with 500 ng/mL recombinant human (rh)IGFBP-3. Results: Hyperosmolar stress altered metabolic activity, shifting cells towards a respiratory phenotype. Hyperosmolar stress further altered mitochondrial calcium levels, depolarized mitochondria, decreased levels of ATP, mtDNA, and expression of IGFBP-3. In contrast, hyperosmolar stress increased production of the proinflammatory cytokines IL-6 and IL-8. Supplementation with rhIGFBP-3 abrogated metabolic and mitochondrial changes with only marginal effects on IL-8. Conclusions: These findings indicate that IGFBP-3 is a critical protein involved in hyperosmolar stress responses in the corneal epithelium. These data further support a new role for IGFBP-3 in the control of cellular metabolism.


Subject(s)
Dry Eye Syndromes , Epithelium, Corneal/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Osmotic Pressure/physiology , Stress, Physiological , Cells, Cultured , Dry Eye Syndromes/immunology , Dry Eye Syndromes/metabolism , Homeostasis , Humans , Inflammation Mediators/metabolism , Interleukin-6/immunology , Interleukin-8/immunology , Mitochondria/physiology , Osmolar Concentration , Stress, Physiological/immunology , Stress, Physiological/physiology
7.
Eye Contact Lens ; 46(5): 319-325, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32443005

ABSTRACT

INTRODUCTION: Type 2 diabetes mellitus has reached epidemic levels in the United States and worldwide. Ocular complications from this disease include diabetic retinopathy and keratopathy, both of which can lead to significant vision loss. While frequently underappreciated, diabetic keratopathy is associated with painful ocular surface disorders, including corneal erosions and delayed wound healing. Recent work in our laboratory has focused on the role of the insulin-like growth factor (IGF) system in diabetic corneal disease. METHODS: Here, we review recent findings on the presence of IGF-1, insulin, and the insulin-like binding protein (IGFBP-3) in human tear fluid and evaluate their potential use as biomarkers in diabetes. We further examine clinical evidence using in vivo confocal microscopy as an important imaging biomarker in diabetes and discuss associations between tear film changes in diabetes and corneal nerve loss. RESULTS: IGFBP-3 was the only tear film marker significantly associated with nerve loss in type 2 diabetes, whereas tear levels of IGF-1 were associated with aging. Interestingly, tear levels of IGFBP-3 were not directly related to serum levels of HbA1c, suggesting that hyperglycemia alone is not driving increased secretion of this protein. CONCLUSIONS: Overwhelming evidence supports the use of in vivo confocal microscopy as a tool to evaluate corneal nerve and epithelial changes induced by diabetes in research settings. The newly identified relationship between morphological changes in the corneal subbasal nerve plexus in diabetes and the increase in tear levels of IGFBP-3 suggest that this protein may represent an innovative new biomarker to assess risk of ocular and nonocular complications in type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Like Growth Factor Binding Protein 3 , Biomarkers , Cornea , Diabetes Mellitus, Type 2/complications , Humans , Tears
8.
Article in English | MEDLINE | ID: mdl-32194500

ABSTRACT

The insulin-like growth factor (IGF) family plays key roles in growth and development. In the cornea, IGF family members have been implicated in proliferation, differentiation, and migration, critical events that maintain a smooth refracting surface that is essential for vision. The IGF family is composed of multiple ligands, receptors, and ligand binding proteins. Expression of IGF type 1 receptor (IGF-1R), IGF type 2 receptor (IGF-2R), and insulin receptor (INSR) in the cornea has been well characterized, including the presence of the IGF-1R and INSR hybrid (Hybrid-R) in the corneal epithelium. Recent data also indicates that each of these receptors display unique intracellular localization. Thus, in addition to canonical ligand binding at the plasma membrane and the initiation of downstream signaling cascades, IGF-1R, INSR, and Hybrid-R also function to regulate mitochondrial stability and nuclear gene expression. IGF-1 and IGF-2, two of three principal ligands, are polypeptide growth factors that function in all cellular layers of the cornea. Unlike IGF-1 and IGF-2, the hormone insulin plays a unique role in the cornea, different from many other tissues in the body. In the corneal epithelium, insulin is not required for glucose uptake, due to constitutive activation of the glucose transporter, GLUT1. However, insulin is needed for the regulation of metabolism, circadian rhythm, autophagy, proliferation, and migration after wounding. There is conflicting evidence regarding expression of the six IGF-binding proteins (IGFBPs), which function primarily to sequester IGF ligands. Within the cornea, IGFBP-2 and IGFBP-3 have identified roles in tissue homeostasis. While IGFBP-3 regulates growth control and intracellular receptor localization in the corneal epithelium, both IGFBP-2 and IGFBP-3 function in corneal fibroblast differentiation and myofibroblast proliferation, key events in stromal wound healing. IGFBP-2 has also been linked to cellular overgrowth in pterygium. There is a clear role for IGF family members in regulating tissue homeostasis in the cornea. This review summarizes what is known regarding the function of IGF and related proteins in corneal development, during wound healing, and in the pathophysiology of disease. Finally, we highlight key areas of research that are in need of future study.


Subject(s)
Cornea/physiology , Corneal Diseases/etiology , Insulin-Like Growth Factor Binding Proteins/physiology , Insulin-Like Growth Factor I/physiology , Insulins/physiology , Wound Healing/physiology , Animals , Cornea/growth & development , Cornea/pathology , Corneal Diseases/pathology , Corneal Injuries/physiopathology , Humans , Signal Transduction/physiology , Wound Healing/genetics
9.
FASEB J ; 34(1): 754-775, 2020 01.
Article in English | MEDLINE | ID: mdl-31914671

ABSTRACT

Unlike many epithelial tissues, the corneal epithelium is insulin insensitive, meaning it does not require insulin for glucose uptake. In this study, we show that insulin differentially regulates mitochondrial respiration in two human mucosal epithelial cell types: insulin-insensitive corneal epithelial cells and insulin-sensitive bronchial epithelial cells. In both cell types, insulin blocks glycogen synthase kinase beta (GSK3ß) activity. In the corneal epithelium however, insulin selectively regulates PTEN-induced kinase 1 (PINK-1)-mediated mitophagy and mitochondrial accumulation of insulin receptor (INSR). While insulin blocked basal levels of PINK-1-mediated mitophagy in bronchial epithelial cells, mitochondrial trafficking of INSR was not detectable. We further show that in corneal epithelia, INSR interacts with the voltage-dependent anion channel-1 (VDAC1) in mitochondria and that INSR knockdown triggers robust mitochondrial fragmentation, alterations in mitochondrial polarization, and blocks the induction of PINK-1-mediated mitophagy. Collectively, these data demonstrate that INSR interacts with VDAC1 to mediate mitochondrial stability. We also demonstrate unique interactions between VDAC1 and other receptor tyrosine kinases, indicating a novel role for this family of receptors in mitochondria.


Subject(s)
Epithelial Cells/metabolism , Mitochondria/metabolism , Receptor, Insulin/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Antigens, CD/metabolism , Apoptosis/physiology , Biological Transport/physiology , Epithelium, Corneal/metabolism , Humans , Insulin/metabolism
10.
Front Physiol ; 10: 1219, 2019.
Article in English | MEDLINE | ID: mdl-31611809

ABSTRACT

Autophagy is a degradative process of cellular components accomplished through an autophagosomal-lysosomal pathway. It is an evolutionary conserved mechanism present in all eukaryotic cells, and it plays a fundamental role in maintaining tissue homeostasis both in vertebrates and invertebrates. Autophagy accompanies tissue remodeling during organ differentiation. Several autophagy-related genes and proteins show significant upregulations following nutrient shortage (i.e., starvation). In our previous study, we found that in female giant freshwater prawns subjected to a short period of starvation autophagy was up-regulated in consonant with ovarian maturation and oocyte differentiation. Whether and how starvation-induced autophagy impacts on testicular maturation and spermatogenesis of the male prawns remained to be investigated. In this study, we analyzed the effects of starvation on histological and cellular changes in the testis of the giant freshwater prawn Macrobrachium rosenbergii that paralleled the induction of autophagy. Under short starvation condition, the male prawns showed increased gonado-somatic index, increased size, and late stage of maturation of seminiferous tubules, which contained increased number of spermatozoa. Concurrently, the number of autophagy vacuoles and autophagy flux, as monitored by transmission electron microscopy and the autophagic marker LC3, increased in the testicular cells, indicating that a short period of starvation could induce testicular maturation and spermatogenesis in male M. rosenbergii along with modulation of autophagy.

11.
Ocul Surf ; 17(4): 644-654, 2019 10.
Article in English | MEDLINE | ID: mdl-31238114

ABSTRACT

Type 2 Diabetes Mellitus (T2DM) is reaching epidemic levels worldwide and with it, there is a significant increase in complications associated with the disease. T2DM affects virtually all organ systems including the eye. While frequently overlooked, diabetic keratopathy is the most common ocular complication of diabetes and can manifest in mild to severe forms, the latter of which poses a major threat to vision. As the initial barrier between the environment and the eye, the corneal epithelium functions in innate immune defense. Compromise of this barrier may predispose the cornea to infection and can hinder the refractive capabilities of the eye. The clinical burden in patients with diabetic keratopathy lies primarily in the inability of the corneal epithelium to repair damage and maintain its tight barrier function. Current therapies for diabetic keratopathy are supportive, centering on the prevention of infection and promotion of an optimal healing environment. With no clear disease-modifying agent identified as of yet, a thorough understanding of the pathophysiology that underlies the development of diabetic keratopathy at the cellular level is critical to identify and develop potential therapeutic agents capable of promoting corneal re-epithelialization to accelerate the wound healing process. The focus of this review is to examine what is known regarding the cellular and molecular mechanisms needed to maintain epithelial homeostasis and how it goes awry in diabetes.


Subject(s)
Corneal Diseases/epidemiology , Epithelium, Corneal/pathology , Hyperglycemia/pathology , Intercellular Signaling Peptides and Proteins/metabolism , Animals , Corneal Diseases/metabolism , Corneal Diseases/pathology , Epithelium, Corneal/metabolism , Humans , Hyperglycemia/complications , Hyperglycemia/metabolism
12.
J Cell Physiol ; 234(2): 1426-1441, 2019 02.
Article in English | MEDLINE | ID: mdl-30078228

ABSTRACT

The insulin-like growth factor type 1 receptor (IGF-1R) is part of the receptor tyrosine kinase superfamily. The activation of IGF-1R regulates several key signaling pathways responsible for maintaining cellular homeostasis, including survival, growth, and proliferation. In addition to mediating signal transduction at the plasma membrane, in serum-based models, IGF-1R undergoes SUMOylation by SUMO 1 and translocates to the nucleus in response to IGF-1. In corneal epithelial cells grown in serum-free culture, however, IGF-1R has been shown to accumulate in the nucleus independent of IGF-1. In this study, we report that the insulin-like growth factor binding protein-3 (IGFBP-3) mediates nuclear translocation of IGF-1R in response to growth factor withdrawal. This occurs via SUMOylation by SUMO 2/3. Further, IGF-1R and IGFBP-3 undergo reciprocal regulation independent of PI3k/Akt signaling. Thus, under healthy growth conditions, IGFBP-3 functions as a gatekeeper to arrest the cell cycle in G0/G1, but does not alter mitochondrial respiration in cultured cells. When stressed, IGFBP-3 functions as a caretaker to maintain levels of IGF-1R in the nucleus. These results demonstrate mutual regulation between IGF-1R and IGFBP-3 to maintain cell survival under stress. This is the first study to show a direct relationship between IGF-1R and IGFBP-3 in the maintenance of corneal epithelial homeostasis.


Subject(s)
Epithelial Cells/metabolism , Epithelium, Corneal/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Receptors, Somatomedin/metabolism , Active Transport, Cell Nucleus , Cell Cycle Checkpoints , Cell Line , Homeostasis , Humans , Primary Cell Culture , Receptor, IGF Type 1 , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism , Stress, Physiological , Sumoylation , Ubiquitins/metabolism
13.
Sci Rep ; 8(1): 4378, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531349

ABSTRACT

Insulin and insulin-like growth factor-1 (IGF-1) are present in human tears and likely play an important role in mediating ocular surface homeostasis. We previously characterized the IGF-1/insulin hybrid receptor (Hybrid-R) in corneal epithelial cells and found that it was activated by IGF-1 and not insulin; and reported the novel finding that it localized to the corneal epithelial cell nucleus. Since the corneal epithelium is an insulin insensitive tissue and does not require insulin for glucose uptake, this study investigated the function of insulin in corneal epithelial cells. We show that stress induced by growth factor deprivation triggers transcriptional upregulation and de novo nuclear accumulation of Hybrid-R through the homodimeric insulin receptor (INSR). This occurs independent of PI3K/Akt signaling. Nuclear accumulation of Hybrid-R was associated with partial cell cycle arrest and a corresponding reduction in mitochondrial respiration. Treatment with insulin, and not IGF-1, attenuated IGF-1R and INSR transcription and restored cell cycle and metabolic homeostasis. Together, these findings support that insulin mediates receptor homeostasis in corneal epithelial cells, favoring an IGF-1 mediated pathway. This may have important implications in diabetic corneal disease and wound healing.


Subject(s)
Epithelium, Corneal/cytology , Insulin/metabolism , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Animals , Cell Cycle Checkpoints , Cell Nucleus/metabolism , Epithelial Cells , Homeostasis , Humans
14.
Med Res Rev ; 38(4): 1235-1254, 2018 07.
Article in English | MEDLINE | ID: mdl-28926101

ABSTRACT

Cancer and stromal cells, which include (cancer-associated) fibroblasts, adipocytes, and immune cells, constitute a mixed cellular ecosystem that dynamically influences the behavior of each component, creating conditions that ultimately favor the emergence of malignant clones. Ovarian cancer cells release cytokines that recruit and activate stromal fibroblasts and immune cells, so perpetuating a state of inflammation in the stroma that hampers the immune response and facilitates cancer survival and propagation. Further, the stroma vasculature impacts the metabolism of the cells by providing or limiting the availability of oxygen and nutrients. Autophagy, a lysosomal catabolic process with homeostatic and prosurvival functions, influences the behavior of cancer cells, affecting a variety of processes such as the survival in metabolic harsh conditions, the invasive growth, the development of immune and chemo resistance, the maintenance of stem-like properties, and dormancy. Further, autophagy is involved in the secretion and the signaling of promigratory cytokines. Cancer-associated fibroblasts can influence the actual level of autophagy in ovarian cancer cells through the secretion of pro-inflammatory cytokines and the release of autophagy-derived metabolites and substrates. Interrupting the metabolic cross-talk between cancer cells and cancer-associated fibroblasts could be an effective therapeutic strategy to arrest the progression and prevent the relapse of ovarian cancer.


Subject(s)
Autophagy , Disease Progression , Fibroblasts/cytology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Stromal Cells/cytology , Animals , Cell Line, Tumor , Cell Survival , Cytokines/metabolism , Female , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Lysosomes/metabolism , Mice , Neoplasm Recurrence, Local , Prognosis , Signal Transduction , Tumor Microenvironment
15.
Invest Ophthalmol Vis Sci ; 58(14): 6105-6112, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29214310

ABSTRACT

Purpose: This study investigated the expression of insulin-like growth factor binding protein-3 (IGFBP-3) in basal tears of patients with type 2 diabetes mellitus compared to nondiabetic controls; and correlated tear levels of IGFBP-3 with morphologic changes in the subbasal nerve plexus and density of basal corneal epithelial cells. Methods: This was a single visit, cross-sectional study. Diabetic and control subjects were matched for age, sex, smoking status, and body mass index. Tear levels of IGFBP-3 were measured using ELISA. Corneal nerve and basal epithelial cell changes were measured using in vivo confocal microscopy. Results: Tear levels of IGFBP-3 were 3.5-fold higher in those with diabetes. Patients with diabetes also showed a reduction in nerve fiber layer, nerve branch density, and corneal basal epithelial cell density. There was no significant difference in corneal sensitivity. IGFBP-3 levels were highly correlated with nerve fiber length and branch density; while hemoglobin (Hb)A1c was only moderately correlated. There were no significant differences in the clinical or subjective signs of dry eye between groups, indicating that tear levels of IGFBP-3 and corneal nerve changes were not due to the presence of mild dry eye. Conclusions: These findings indicate that tear levels of IGFBP-3 are more tightly correlated to nerve fiber changes in diabetes than HbA1c. Future studies that stratify the severity of diabetic disease with tear levels of IGFBP-3 are needed to validate this finding.


Subject(s)
Cornea/innervation , Diabetes Mellitus, Type 2/metabolism , Dry Eye Syndromes/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Ophthalmic Nerve/diagnostic imaging , Tears/chemistry , Biomarkers/metabolism , Cornea/diagnostic imaging , Cornea/metabolism , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Microscopy, Confocal , Middle Aged , Nerve Fibers
16.
Mol Carcinog ; 56(12): 2681-2691, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28856729

ABSTRACT

The potential benefit of nutrient starvation in the prevention and treatment of cancer is presently under consideration. Resveratrol (RV), a dietary polyphenol acting as a protein (caloric) restriction mimetic, could substitute for amino acid starvation. The effects of starvation and of caloric restriction are mediated, among others, by autophagy, a process that contributes to cell homeostasis by promoting the lysosomal degradation of damaged and redundant self-constituents. Up-regulation of autophagy favors cell survival under nutrient shortage situation, and may drive cancer cells into a non-replicative, dormant state. Both RV and amino acid starvation effectively induced the aminoacid response and autophagy. These processes were associated with inhibition of the mTOR pathway and disruption of the BECLIN1-BCL-2 complex. The number of transcripts positively impinging on the autophagy pathway was higher in RV-treated than in starved cancer cells. Consistent with our data, it appears that RV treatment is more effective than and can substitute for starvation for inducing autophagy in cancer cells. The present findings are clinically relevant because of the potential therapeutic implications.


Subject(s)
Amino Acids/metabolism , Autophagy/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Stilbenes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/genetics , Blotting, Western , Cell Line, Tumor , Cluster Analysis , Female , Humans , Microscopy, Fluorescence , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Resveratrol , Signal Transduction/drug effects , Signal Transduction/genetics
17.
Front Physiol ; 8: 300, 2017.
Article in English | MEDLINE | ID: mdl-28553234

ABSTRACT

Limitation of food availability (starvation) is known to influence the reproductive ability of animals. Autophagy is a lysosomal driven degradation process that protects the cell under metabolic stress conditions, such as during nutrient shortage. Whether, and how starvation-induced autophagy impacts on the maturation and function of reproductive organs in animals are still open questions. In this study, we have investigated the effects of starvation on histological and cellular changes that may be associated with autophagy in the ovary of the giant freshwater prawn, Macrobachium rosenbergii. To this end, the female prawns were daily fed (controls) or unfed (starvation condition) for up to 12 days, and the ovary tissue was analyzed at different time-points. Starvation triggered ovarian maturation, and concomitantly increased the expression of autophagy markers in vitellogenic oocytes. The immunoreactivities for autophagy markers, including Beclin1, LC3-II, and Lamp1, were enhanced in the late oocytes within the mature ovaries, especially at the vitellogenic stages. These markers co-localized with vitellin in the yolk granules within the oocytes, suggesting that autophagy induced by starvation could drive vitellin utilization, thus promoting ovarian maturation.

18.
EBioMedicine ; 2(3): 255-263, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25825707

ABSTRACT

Both BRCA1 and Beclin 1 (BECN1) are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA) (n=1067) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n=1992). In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative) breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1) was associated with poor prognosis, and BECN1 (but not BRCA1) expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers.

19.
Genes Cancer ; 5(7-8): 226-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25221641

ABSTRACT

Proliferating cancer cells oxidize glucose through the glycolytic pathway. Since this metabolism is less profitable in terms of ATP production, cancer cells consume large quantity of glucose, and those that experience insufficient blood supply become glucose-addicted. We have analyzed the response to glucose depletion in WRO and FTC133 follicular thyroid cancer cells, which differ in the expression of two key regulators of the glucose metabolism. WRO cells, which express wild type p53 and PTEN, showed a higher rate of cell proliferation and were much less sensitive to glucose-depletion than FTC133 cells, which are PTEN null and express mutant p53. Glucose depletion slowed-down the autophagy flux in FTC133 cells, not in WRO cells. In a wound-healing assay, WRO cells were shown to migrate faster than FTC133 cells. Glucose depletion slowed down the cell migration rate, and these effects were more evident in FTC133 cells. Genetic silencing of either wild-type PTEN or p53 in WRO cells resulted in increased uptake of glucose, whereas the ectopic expression of PTEN in FTC133 cells resulted in diminished glucose uptake. In conclusion, compared to WRO, FTC133 cells were higher glucose up-taker and consumer. These data do not support the general contention that cancer cells lacking PTEN or expressing the mutant p53R273H are more aggressive and prone to better face glucose depletion. We propose that concurrent PTEN deficiency and mutant p53 leads to a glucose-addiction state that renders the cancer cell more sensitive to glucose restriction. The present observation substantiates the view that glucose-restriction may be an adjuvant strategy to combat these tumours.

20.
J Mol Endocrinol ; 53(2): 247-58, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25125078

ABSTRACT

Glucose represents an important source of energy for the cells. Proliferating cancer cells consume elevated quantity of glucose, which is converted into lactate regardless of the presence of oxygen. This phenomenon, known as the Warburg effect, has been proven to be useful for imaging metabolically active tumours in cancer patients by (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glucose is internalised in the cells by glucose transporters (GLUTs) belonging to the GLUT family. GLUT1 (SLC2A1) is the most prevalent isoform in more aggressive and less differentiated thyroid cancer histotypes. In a previous work, we found that loss of expression of PTEN was associated with increased expression of GLUT1 on the plasma membrane (PM) and probability of detecting thyroid incidentalomas by FDG-PET. Herein, we investigated the molecular pathways that govern the expression of GLUT1 on the PM and the glucose uptake in WRO (expressing WT PTEN) and FTC133 (PTEN null) follicular thyroid cancer cells cultured under glucose-depleted conditions. The membrane expression of GLUT1 was enhanced in glucose-deprived cells. Through genetic manipulations of PTEN expression, we could demonstrate that the lack of this oncosuppressor has a dominant effect on the membrane expression of GLUT1 and glucose uptake. We conclude that loss of function of PTEN increases the probability of cancer detection by FDG-PET or other glucose-based imaging diagnosis.


Subject(s)
Cell Membrane/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , PTEN Phosphohydrolase/metabolism , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Gene Expression , Humans , Intracellular Space/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Thyroid Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...