Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(3): e0205023, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38353557

ABSTRACT

Cancer patients are at risk for severe coronavirus disease 2019 (COVID-19) outcomes due to impaired immune responses. However, the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is inadequately characterized in this population. We hypothesized that cancer vs non-cancer individuals would mount less robust humoral and/or cellular vaccine-induced immune SARS-CoV-2 responses. Receptor binding domain (RBD) and SARS-CoV-2 spike protein antibody levels and T-cell responses were assessed in immunocompetent individuals with no underlying disorders (n = 479) and immunocompromised individuals (n = 115). All 594 individuals were vaccinated and of varying COVID-19 statuses (i.e., not known to have been infected, previously infected, or "Long-COVID"). Among immunocompromised individuals, 59% (n = 68) had an underlying hematologic malignancy; of those, 46% (n = 31) of individuals received cancer treatment <30 days prior to study blood collection. Ninety-eight percentage (n = 469) of immunocompetent and 81% (n = 93) of immunocompromised individuals had elevated RBD antibody titers (>1,000 U/mL), and of these, 60% (n = 281) and 44% (n = 41), respectively, also had elevated T-cell responses. Composite T-cell responses were higher in individuals previously infected with SARS-CoV-2 or those diagnosed with Long-COVID compared to uninfected individuals. T-cell responses varied between immunocompetent vs carcinoma (n = 12) cohorts (P < 0.01) but not in immunocompetent vs hematologic malignancy cohorts. Most SARS-CoV-2 vaccinated individuals mounted robust cellular and/or humoral responses, though higher immunogenicity was observed among the immunocompetent compared to cancer populations. The study suggests B-cell targeted therapies suppress antibody responses, but not T-cell responses, to SARS-CoV-2 vaccination. Thus, vaccination continues to be an effective way to induce humoral and cellular immune responses as a likely key preventive measure against infection and/or subsequent more severe adverse outcomes. IMPORTANCE: The study was prompted by a desire to better assess the immune status of patients among our cancer host cohort, one of the largest in the New York metropolitan region. Hackensack Meridian Health is the largest healthcare system in New Jersey and cared for more than 75,000 coronavirus disease 2019 patients in its hospitals. The John Theurer Cancer Center sees more than 35,000 new cancer patients a year and performs more than 500 hematopoietic stem cell transplants. As a result, the work was undertaken to assess the effectiveness of vaccination in inducing humoral and cellular responses within this demographic.


Subject(s)
COVID-19 , Hematologic Neoplasms , Neoplasms , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination , Immunity, Cellular , Antibodies, Viral , Immunity, Humoral
2.
Viruses ; 15(8)2023 08 05.
Article in English | MEDLINE | ID: mdl-37632041

ABSTRACT

New Jersey was among the first states impacted by the COVID-19 pandemic, with one of the highest overall death rates in the nation. Nevertheless, relatively few reports have been published focusing specifically on New Jersey. Here we report on molecular, clinical, and epidemiologic observations, from the largest healthcare network in the state, in a cohort of vaccinated and unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection. We conducted molecular surveillance of SARS-CoV-2-positive nasopharyngeal swabs collected in nine hospitals from December 2020 through June 2022, using both whole genome sequencing (WGS) and a real-time RT-PCR screening assay targeting spike protein mutations found in variants of concern (VOCs) within our region. De-identified clinical data were obtained retrospectively, including demographics, COVID-19 vaccination status, ICU admission, ventilator support, mortality, and medical history. Statistical analyses were performed to identify associations between SARS-CoV-2 variants, vaccination status, clinical outcomes, and medical risk factors. A total of 5007 SARS-CoV-2-positive nasopharyngeal swabs were successfully screened and/or sequenced. Variant screening identified three predominant VOCs, including Alpha (n = 714), Delta (n = 1877), and Omicron (n = 1802). Omicron isolates were further sub-typed as BA.1 (n = 899), BA.2 (n = 853), or BA.4/BA.5 (n = 50); the remaining 614 isolates were classified as "Other". Approximately 31.5% (1577/5007) of the samples were associated with vaccine breakthrough infections, which increased in frequency following the emergence of Delta and Omicron. Severe clinical outcomes included ICU admission (336/5007 = 6.7%), ventilator support (236/5007 = 4.7%), and mortality (430/5007 = 8.6%), with increasing age being the most significant contributor to each (p < 0.001). Unvaccinated individuals accounted for 79.7% (268/336) of ICU admissions, 78.3% (185/236) of ventilator cases, and 74.4% (320/430) of deaths. Highly significant (p < 0.001) increases in mortality were observed in individuals with cardiovascular disease, hypertension, cancer, diabetes, and hyperlipidemia, but not with obesity, thyroid disease, or respiratory disease. Significant differences (p < 0.001) in clinical outcomes were also noted between SARS-CoV-2 variants, including Delta, Omicron BA.1, and Omicron BA.2. Vaccination was associated with significantly improved clinical outcomes in our study, despite an increase in breakthrough infections associated with waning immunity, greater antigenic variability, or both. Underlying comorbidities contributed significantly to mortality in both vaccinated and unvaccinated individuals, with increasing risk based on the total number of comorbidities. Real-time RT-PCR-based screening facilitated timely identification of predominant variants using a minimal number of spike protein mutations, with faster turnaround time and reduced cost compared to WGS. Continued evolution of SARS-CoV-2 variants will likely require ongoing surveillance for new VOCs, with real-time assessment of clinical impact.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , New Jersey/epidemiology , COVID-19 Vaccines , Pandemics , Retrospective Studies , Spike Glycoprotein, Coronavirus , Breakthrough Infections
SELECTION OF CITATIONS
SEARCH DETAIL
...