Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Genom ; : 100606, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991604

ABSTRACT

DNA is folded into higher-order structures that shape and are shaped by genome function. The role of long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNA Pol II) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitor cells (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNA Pol II initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops or promoter-promoter loops or when unlooped. Genes transitioning from repression to RNA Pol II initiation exhibit a slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNA Pol II-mediated elongation during neural cell fate transitions.

2.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38134876

ABSTRACT

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Trinucleotide Repeat Expansion , DNA Methylation , Mutation , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
3.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106199

ABSTRACT

DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitors (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNAPolII initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops, promoter-promoter loops, or unlooped. Genes transitioning from repression to RNAPolII initiation exhibit slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNAPolII-mediated elongation during neural cell fate transitions.

4.
Nature ; 606(7915): 812-819, 2022 06.
Article in English | MEDLINE | ID: mdl-35676475

ABSTRACT

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.


Subject(s)
Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Replication Origin , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , Humans , Replication Origin/genetics , S Phase , Cohesins
5.
6.
Nat Neurosci ; 23(6): 707-717, 2020 06.
Article in English | MEDLINE | ID: mdl-32451484

ABSTRACT

Neuronal activation induces rapid transcription of immediate early genes (IEGs) and longer-term chromatin remodeling around secondary response genes (SRGs). Here, we use high-resolution chromosome-conformation-capture carbon-copy sequencing (5C-seq) to elucidate the extent to which long-range chromatin loops are altered during short- and long-term changes in neural activity. We find that more than 10% of loops surrounding select IEGs, SRGs, and synaptic genes are induced de novo during cortical neuron activation. IEGs Fos and Arc connect to activity-dependent enhancers via singular short-range loops that form within 20 min after stimulation, prior to peak messenger RNA levels. By contrast, the SRG Bdnf engages in both pre-existing and activity-inducible loops that form within 1-6 h. We also show that common single-nucleotide variants that are associated with autism and schizophrenia are colocalized with distinct classes of activity-dependent, looped enhancers. Our data link architectural complexity to transcriptional kinetics and reveal the rapid timescale by which higher-order chromatin architecture reconfigures during neuronal stimulation.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Gene Expression/physiology , Genome/genetics , Neurons/physiology , Animals , Bicuculline/pharmacology , Brain-Derived Neurotrophic Factor/physiology , Chromatin Assembly and Disassembly/genetics , Cytoskeletal Proteins/physiology , Genome/drug effects , Humans , Mice , Nerve Tissue Proteins/physiology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/physiology , Tetrodotoxin/pharmacology , Time Factors
7.
Nature ; 576(7785): 158-162, 2019 12.
Article in English | MEDLINE | ID: mdl-31776509

ABSTRACT

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.


Subject(s)
Chromatin , G1 Phase , Mitosis , Animals , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mice , Cohesins
8.
Sci Rep ; 9(1): 9526, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266973

ABSTRACT

Mammalian genomes are folded into a hierarchy of compartments, topologically associating domains (TADs), subTADs, and long-range looping interactions. The higher-order folding patterns of chromatin contacts within TADs and how they localize to disease-associated single nucleotide variants (daSNVs) remains an open area of investigation. Here, we analyze high-resolution Hi-C data with graph theory to understand possible mesoscale network architecture within chromatin domains. We identify a subset of TADs exhibiting strong core-periphery mesoscale structure in embryonic stem cells, neural progenitor cells, and cortical neurons. Hyper-connected core nodes co-localize with genomic segments engaged in multiple looping interactions and enriched for occupancy of the architectural protein CCCTC binding protein (CTCF). CTCF knockdown and in silico deletion of CTCF-bound core nodes disrupts core-periphery structure, whereas in silico mutation of cell type-specific enhancer or gene nodes has a negligible effect. Importantly, neuropsychiatric daSNVs are significantly more likely to localize with TADs folded into core-periphery networks compared to domains devoid of such structure. Together, our results reveal that a subset of TADs encompasses looping interactions connected into a core-periphery mesoscale network. We hypothesize that daSNVs in the periphery of genome folding networks might preserve global nuclear architecture but cause local topological and functional disruptions contributing to human disease. By contrast, daSNVs co-localized with hyper-connected core nodes might cause severe topological and functional disruptions. Overall, these findings shed new light into the mesoscale network structure of fine scale genome folding within chromatin domains and its link to common genetic variants in human disease.


Subject(s)
Chromosomes/chemistry , Models, Biological , CCCTC-Binding Factor/antagonists & inhibitors , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin Assembly and Disassembly , Chromosomes/genetics , Chromosomes/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Genome , Humans , Mental Disorders/genetics , Mental Disorders/pathology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/chemistry , Neurons/metabolism , Polymorphism, Single Nucleotide , RNA Interference
9.
Nat Methods ; 16(7): 633-639, 2019 07.
Article in English | MEDLINE | ID: mdl-31235883

ABSTRACT

Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.


Subject(s)
Gene Expression Regulation , Protein Engineering , Animals , Carrier Proteins/genetics , Cells, Cultured , DNA-Binding Proteins , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Light , Male , Mice , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/genetics
10.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30173918

ABSTRACT

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Subject(s)
Chromatin/genetics , Microsatellite Repeats/physiology , Trinucleotide Repeat Expansion/physiology , Adult , Brain/cytology , Brain/pathology , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/physiology , Cell Line , Chromatin/physiology , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/physiology , CpG Islands/genetics , CpG Islands/physiology , DNA/genetics , Disease/etiology , Disease/genetics , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Genome, Human/genetics , Humans , Male , Microsatellite Repeats/genetics , Trinucleotide Repeat Expansion/genetics
11.
Methods ; 142: 39-46, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29772275

ABSTRACT

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs, and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C can generate genome-wide maps of looping interactions but is intractable for high-throughput comparison of loops across multiple conditions due to the enormous number of reads (>6 Billion) required per library. Here, we describe 5C-ID, a new version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a double alternating primer design. We demonstrate that 5C-ID produces higher-resolution 3D genome folding maps with reduced spatial noise using markedly lower cell numbers than canonical 5C. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.


Subject(s)
Chromosome Mapping/methods , Chromosomes/genetics , DNA Primers/genetics , Genome/genetics , Nucleic Acid Conformation , Animals , Cell Culture Techniques/methods , Cells, Cultured , Chromosomes/chemistry , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells , Polymerase Chain Reaction , Sequence Analysis, DNA
12.
Nat Methods ; 15(2): 119-122, 2018 02.
Article in English | MEDLINE | ID: mdl-29334377

ABSTRACT

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs and looping interactions. Here, we describe 3DNetMod, a graph theory-based method for sensitive and accurate detection of chromatin domains across length scales in Hi-C data. We identify nested, partially overlapping TADs and subTADs genome wide by optimizing network modularity and varying a single resolution parameter. 3DNetMod can be applied broadly to understand genome reconfiguration in development and disease.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Computational Biology/methods , Computer Graphics , Genome, Human , High-Throughput Nucleotide Sequencing , Humans
13.
Genome Res ; 27(7): 1139-1152, 2017 07.
Article in English | MEDLINE | ID: mdl-28536180

ABSTRACT

CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin Assembly and Disassembly , Chromatin/metabolism , Human Embryonic Stem Cells/metabolism , Neural Stem Cells/metabolism , YY1 Transcription Factor/metabolism , Cell Line , Enhancer Elements, Genetic , Genome-Wide Association Study , Human Embryonic Stem Cells/cytology , Humans , Neural Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL