Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500458

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.


Subject(s)
Lythraceae , Methicillin-Resistant Staphylococcus aureus , Rhizophoraceae , Antioxidants/pharmacology , Antioxidants/analysis , Staphylococcus aureus , Ethanol/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Leaves/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Phenols/pharmacology , Phenols/analysis , Anti-Bacterial Agents/chemistry
2.
Iran J Microbiol ; 14(1): 24-30, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35664719

ABSTRACT

Background and Objectives: Anaerobic bacteria are a common cause of endogenous infections, some of which can be life threatening. These bacteria are not easily cultured and isolated and often cannot even found from infected sites. Delayed or inappropriate treatment of these microorganisms can lead to failure in eradicating these infections. The purpose of this study was to determine the diversity of anaerobic bacteria at present and their pattern of sensitivity to several antibiotics. Materials and Methods: A retrospective study was conducted over a period of two years on various specimens. Specimens derived from body fluids are inoculated on a BacT/Alert (bioMérieux). Anaerobic isolates were identified by Gram staining and continued identification using Vitek 2® automated system. Antibiotic sensitivity examination was carried out using ATBTM ANA (bioMérieux). Results: A total of 440 specimens were received in microbiology laboratory for anaerobic culture from patients with multiple infections from 13 hospitals in Jakarta. Our research was able to identify 18 species on anaerobic bacteria, consisting 52.5% Gram positive and 47.5% Gram negative bacteria. The most common bacteria found were Clostridium perfringens (15%) from Gram positive and Provetella bivia (10%) from Gram negative. The sensitivity pattern shows that antibiotic piperacilline-tazobactam is 100% effective against anaerobic bacteria, while metronidazole as the drug of choice is only 75% effective. Against Gram positive, several antibiotics such as piperacilline-tazobactam, ticarcilin-clavunic acid, cefoxitin, cefotetan, imipenem and chloramphenicol were 100% effective, however metronidazole occupied the lowest position (61.9%). Meanwhile against Gram negative antibiotics piperacilline-tazobactam is 100% effective and chloramphenicol in the second position (94.75%). Conclusion: Clostridium perfringens and Provetella bivia are the most common bacteria found. The antibiotics piperacilline-tazobactam is 100% effective against both Gram positive and negative. The accuracy of specimen management, isolation, identification and sensitivity examination will determine the successful microbiological investigations.

3.
Asian Pac J Trop Biomed ; 3(8): 663-7; discussion 666, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23905026

ABSTRACT

OBJECTIVE: To evaluate antibacterial activity of the Indonesian water soluble green tea extract, Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa). METHODS: Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia. RESULTS: The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970 ± 0.287) mm, and (19.130 ± 0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550 ± 0.393) mm and (17.670 ± 0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively. CONCLUSIONS: Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Tea/chemistry , Drug Resistance, Multiple , Indonesia , Microbial Sensitivity Tests , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...