Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(2): 1103-1115, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33404239

ABSTRACT

O-GlcNAcase (OGA) has received increasing attention as an attractive therapeutic target for tau-mediated neurodegenerative disorders; however, its role in these pathologies remains unclear. Therefore, potent chemical tools with favorable pharmacokinetic profiles are desirable to characterize this enzyme. Herein, we report the discovery of a potent and novel OGA inhibitor, compound 5i, comprising an aminopyrimidine scaffold, identified by virtual screening based on multiple methodologies combining structure-based and ligand-based approaches, followed by sequential optimization with a focus on ligand lipophilicity efficiency. This compound was observed to increase the level of O-GlcNAcylated protein in cells and display suitable pharmacokinetic properties and brain permeability. Crystallographic analysis revealed that the chemical series bind to OGA via characteristic hydrophobic interactions, which resulted in a high affinity for OGA with moderate lipophilicity. Compound 5i could serve as a useful chemical probe to help establish a proof-of-concept of OGA inhibition as a therapeutic target for the treatment of tauopathies.


Subject(s)
Acetylglucosamine/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , beta-N-Acetylhexosaminidases/antagonists & inhibitors , Animals , Brain/metabolism , Cell Line , Computer Simulation , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuroprotective Agents/pharmacokinetics , Structure-Activity Relationship , Tauopathies/drug therapy
2.
ACS Med Chem Lett ; 10(10): 1498-1503, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31620240

ABSTRACT

General control nonderepressible 2 (GCN2) is a master regulator kinase of amino acid homeostasis and important for cancer survival in the tumor microenvironment under amino acid depletion. We initiated studies aiming at the discovery of novel GCN2 inhibitors as first-in-class antitumor agents and conducted modification of the substructure of sulfonamide derivatives with expected type I half binding on GCN2. Our synthetic strategy mainly corresponding to the αC-helix allosteric pocket of GCN2 led to significant enhancement in potency and a good pharmacokinetic profile in mice. In addition, compound 6d, which showed slow dissociation in binding on GCN2, demonstrated antiproliferative activity in combination with the asparagine-depleting agent asparaginase in an acute lymphoblastic leukemia (ALL) cell line, and it also displayed suppression of GCN2 pathway activation with asparaginase treatment in the ALL cell line and mouse xenograft model.

3.
EMBO Mol Med ; 10(6)2018 06.
Article in English | MEDLINE | ID: mdl-29769258

ABSTRACT

The modulation of pre-mRNA splicing is proposed as an attractive anti-neoplastic strategy, especially for the cancers that exhibit aberrant pre-mRNA splicing. Here, we discovered that T-025 functions as an orally available and potent inhibitor of Cdc2-like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T-025 reduced CLK-dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive-associated biomarker of T-025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T-025 treatment. MYC activation, which altered pre-mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti-tumor efficacy of T-025 in an allograft model of spontaneous, MYC-driven breast cancer, at well-tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC-driven cancer patients.


Subject(s)
Diamines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Quinolines/pharmacology , RNA Splicing/drug effects , Animals , Cell Line, Tumor , Diamines/chemistry , Genes, myc , Humans , Mice , Mice, Transgenic , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/physiology , Pyrimidines/chemistry , Quinolines/chemistry , RNA Splicing/genetics
4.
J Med Chem ; 60(13): 5759-5771, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28586220

ABSTRACT

Brr2 is an RNA helicase belonging to the Ski2-like subfamily and an essential component of spliceosome. Brr2 catalyzes an ATP-dependent unwinding of the U4/U6 RNA duplex, which is a critical step for spliceosomal activation. An HTS campaign using an RNA-dependent ATPase assay and initial SAR study identified two different Brr2 inhibitors, 3 and 12. Cocrystal structures revealed 3 binds to an unexpected allosteric site between the C-terminal and the N-terminal helicase cassettes, while 12 binds an RNA-binding site inside the N-terminal cassette. Selectivity profiling indicated the allosteric inhibitor 3 is more Brr2-selective than the RNA site binder 12. Chemical optimization of 3 using SBDD culminated in the discovery of the potent and selective Brr2 inhibitor 9 with helicase inhibitory activity. Our findings demonstrate an effective strategy to explore selective inhibitors for helicases, and 9 could be a promising starting point for exploring molecular probes to elucidate biological functions and the therapeutic relevance of Brr2.


Subject(s)
Allosteric Regulation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA Helicases/antagonists & inhibitors , Crystallography, X-Ray , Drug Design , Humans , Molecular Docking Simulation , RNA Helicases/chemistry , RNA Helicases/metabolism , Spliceosomes/drug effects , Spliceosomes/enzymology , Spliceosomes/metabolism
5.
J Med Chem ; 60(12): 5209-5215, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28564542

ABSTRACT

Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease.


Subject(s)
Boronic Acids/chemistry , Phosphoric Diester Hydrolases/metabolism , Serine Proteinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Humans , Nitriles/chemistry , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Surface Plasmon Resonance
6.
J Biol Chem ; 283(42): 28757-66, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18701464

ABSTRACT

Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.


Subject(s)
Gene Expression Regulation , RNA-Binding Proteins/chemistry , Amino Acid Sequence , DNA/chemistry , Dimerization , Humans , Magnetic Resonance Spectroscopy , Models, Biological , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
7.
Proc Natl Acad Sci U S A ; 105(7): 2391-6, 2008 Feb 19.
Article in English | MEDLINE | ID: mdl-18268334

ABSTRACT

Dicer, an RNase III enzyme, initiates RNA interference by processing precursor dsRNAs into mature microRNAs and small-interfering RNAs. It is also involved in loading and activation of the RNA-induced silencing complex. Here, we report the crystal structures of a catalytically active fragment of mouse Dicer, containing the RNase IIIb and dsRNA binding domains, in its apo and Cd(2+)-bound forms, at 1.68- and 2.8-A resolution, respectively. Models of this structure with dsRNA reveal that a lysine residue, highly conserved in Dicer RNase IIIa and IIIb domains and in Drosha RNase IIIb domains, has the potential to participate in the phosphodiester bond cleavage reaction by stabilizing the transition state and leaving group of the scissile bond. Mutational and enzymatic assays confirm the importance of this lysine in dsRNA cleavage, suggesting that this lysine represents a conserved catalytic residue of Dicers. The structures also reveals a approximately 45-aa region within the RNase IIIb domain that harbors an alpha-helix at the N-terminal half and a flexible loop at the C-terminal half, features not present in previously reported structures of homologous RNase III domains from either bacterial RNase III enzymes or Giardia Dicer. N-terminal residues of this alpha-helix have the potential to engage in minor groove interaction with dsRNA substrates.


Subject(s)
Lysine/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , Dimerization , Lysine/genetics , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Ribonuclease III/genetics , Sequence Alignment , Structural Homology, Protein
8.
RNA ; 13(7): 1043-51, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17526645

ABSTRACT

Poly(C)-binding proteins (PCBPs) are KH (hnRNP K homology) domain-containing proteins that recognize poly(C) DNA and RNA sequences in mammalian cells. Binding poly(C) sequences via the KH domains is critical for PCBP functions. To reveal the mechanisms of KH domain-D/RNA recognition and its functional importance, we have determined the crystal structures of PCBP2 KH1 domain in complex with a 12-nucleotide DNA corresponding to two repeats of the human C-rich strand telomeric DNA and its RNA equivalent. The crystal structures reveal molecular details for not only KH1-DNA/RNA interaction but also protein-protein interaction between two KH1 domains. NMR studies on a protein construct containing two KH domains (KH1 + KH2) of PCBP2 indicate that KH1 interacts with KH2 in a way similar to the KH1-KH1 interaction. The crystal structures and NMR data suggest possible ways by which binding certain nucleic acid targets containing tandem poly(C) motifs may induce structural rearrangement of the KH domains in PCBPs; such structural rearrangement may be crucial for some PCBP functions.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Poly C/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Base Sequence , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Dimerization , Humans , Models, Molecular , Molecular Sequence Data , Poly C/chemistry , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , RNA/chemistry , RNA/metabolism , Sequence Homology, Amino Acid
9.
Nucleic Acids Res ; 35(8): 2651-60, 2007.
Article in English | MEDLINE | ID: mdl-17426136

ABSTRACT

KH (hnRNP K homology) domains, consisting of approximately 70 amino acid residues, are present in a variety of nucleic-acid-binding proteins. Among these are poly(C)-binding proteins (PCBPs), which are important regulators of mRNA stability and posttranscriptional regulation in general. All PCBPs contain three different KH domains and recognize poly(C)-sequences with high affinity and specificity. To reveal the molecular basis of poly(C)-sequence recognition, we have determined the crystal structure, at 1.6 A resolution, of PCBP2 KH3 domain in complex with a 7-nt DNA sequence (5'-AACCCTA-3') corresponding to one repeat of the C-rich strand of human telomeric DNA. The domain assumes a type-I KH fold in a betaalphaalphabetabetaalpha configuration. The protein-DNA interface could be studied in unprecedented detail and is made up of a series of direct and water-mediated hydrogen bonds between the protein and the DNA, revealing an especially dense network involving several structural water molecules for the last 2 nt in the core recognition sequence. Unlike published KH domain structures, the protein crystallizes without protein-protein contacts, yielding new insights into the dimerization properties of different KH domains. A nucleotide platform, an interesting feature found in some RNA molecules, was identified, evidently for the first time in DNA.


Subject(s)
DNA/chemistry , Models, Molecular , RNA-Binding Proteins/chemistry , Telomere/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment
10.
J Biol Chem ; 280(46): 38823-30, 2005 Nov 18.
Article in English | MEDLINE | ID: mdl-16186123

ABSTRACT

Recognition of poly(C) DNA and RNA sequences in mammalian cells is achieved by a subfamily of the KH (hnRNP K homology) domain-containing proteins known as poly(C)-binding proteins (PCBPs). To reveal the molecular basis of poly(C) sequence recognition, we have determined the crystal structure, at 1.7-A resolution, of PCBP2 KH1 in complex with a 7-nucleotide DNA sequence (5'-AACCCTA-3') corresponding to one repeat of the human C-rich strand telomeric DNA. The protein-DNA interaction is mediated by the combination of several stabilizing forces including hydrogen bonding, electrostatic interactions, van der Waals contacts, and shape complementarities. Specific recognition of the three cytosine residues is realized by a dense network of hydrogen bonds involving the side chains of two conserved lysines and one glutamic acid. The co-crystal structure also reveals a protein-protein dimerization interface of PCBP2 KH1 located on the opposite side of the protein from the DNA binding groove. Numerous stabilizing protein-protein interactions, including hydrophobic contacts, stacking of aromatic side chains, and a large number of hydrogen bonds, indicate that the protein-protein interaction interface is most likely genuine. Interaction of PCBP2 KH1 with the C-rich strand of human telomeric DNA suggests that PCBPs may participate in mechanisms involved in the regulation of telomere/telomerase functions.


Subject(s)
DNA/chemistry , RNA-Binding Proteins/chemistry , Telomere/ultrastructure , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Glutamic Acid/chemistry , Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Humans , Hydrogen Bonding , Lysine/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , RNA-Binding Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...