Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
2.
Sex Transm Infect ; 99(6): 409-415, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37156608

ABSTRACT

INTRODUCTION: Polyphenylene carboxymethylene (PPCM) is a condensation polymer that has both contraceptive and antimicrobial activity against several sexually transmitted viruses including HIV, herpes simplex virus, Ebola virus and SARS-CoV-2 in preclinical studies. PPCM, both as an active pharmaceutical ingredient (API) and in a vaginal gel formulation (Yaso-GEL), has an excellent safety profile. Here, we evaluated the efficacy of PPCM against Neisseria gonorrhoeae in vitro and in a gonorrhoea mouse model. METHODS: The minimal inhibitory concentration (MIC) of PPCM was determined against 11 N. gonorrhoeae strains by agar dilution and a microtitre plate-based method. In vivo efficacy was tested in a murine model of N. gonorrhoeae genital tract infection by applying Yaso-GEL, PPCM incorporated in 2.7% hydroxyethylcellulose (HEC), or the HEC vehicle vaginally prior to challenge with N. gonorrhoeae. Vaginal swabs were quantitatively cultured over 5 days to assess efficacy. RESULTS: PPCM MIC against N. gonorrhoeae ranged between 5-100 µg/mL (agar dilution) and 50-200 µg/mL (microtitre plate method). PPCM/HEC gel applied vaginally prior to bacterial challenge resulted in a concentration-dependent inhibition of infection. Yaso-GEL containing 4% PPCM prevented infection in 100% of mice. Incubation of N. gonorrhoeae with PPCM increased membrane permeability, suggesting PPCM directly compromises N. gonorrhoeae viability, which may be a mechanism by which PPCM inhibits N. gonorrhoeae infection. CONCLUSIONS: Yaso-GEL containing the API PPCM showed significant activity against N. gonorrhoeae in vitro and in vivo in a female mouse model. These data support further development of Yaso-GEL as an inexpensive, non-hormonal and non-systemic product with both contraceptive and antimicrobial activity against gonorrhea and other common sexually transmitted infections (STIs). Such multipurpose prevention technology products are needed by women in all economic, social and cultural circumstances to prevent unintended pregnancy and STIs.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Female , Humans , Animals , Mice , Neisseria gonorrhoeae , Anti-Bacterial Agents/therapeutic use , Contraceptive Agents/therapeutic use , Agar/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/microbiology , Polymers/pharmacology , Polymers/therapeutic use , Microbial Sensitivity Tests
3.
Astrobiology ; 22(11): 1337-1350, 2022 11.
Article in English | MEDLINE | ID: mdl-36282180

ABSTRACT

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.


Subject(s)
Extraterrestrial Environment , Mars , Humans , Desiccation , Freezing , Saccharomyces cerevisiae , Spores, Bacterial/radiation effects , Radiation, Ionizing , Polyploidy
4.
mBio ; 13(1): e0339421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35012337

ABSTRACT

Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.


Subject(s)
Antioxidants , Deinococcus , Animals , Antioxidants/metabolism , Caenorhabditis elegans/metabolism , Reactive Oxygen Species/metabolism , Deinococcus/metabolism , Deinococcus/radiation effects , Manganese/metabolism , Superoxides/metabolism , Superoxide Dismutase/metabolism , Aging
5.
Sci Rep ; 11(1): 12949, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155239

ABSTRACT

Networks of transcriptional and post-transcriptional regulators are critical for bacterial survival and adaptation to environmental stressors. While transcriptional regulators provide rapid activation and/or repression of a wide-network of genes, post-transcriptional regulators, such as small RNAs (sRNAs), are also important to fine-tune gene expression. However, the mechanisms of sRNAs remain poorly understood, especially in less-studied bacteria. Deinococcus radiodurans is a gram-positive bacterium resistant to extreme levels of ionizing radiation (IR). Although multiple unique regulatory systems (e.g., the Radiation and Desiccation Response (RDR)) have been identified in this organism, the role of post-transcriptional regulators has not been characterized within the IR response. In this study, we have characterized an sRNA, PprS (formerly Dsr2), as a post-transcriptional coordinator of IR recovery in D. radiodurans. PprS showed differential expression specifically under IR and knockdown of PprS resulted in reduced survival and growth under IR, suggesting its importance in regulating post-radiation recovery. We determined a number of potential RNA targets involved in several pathways including translation and DNA repair. Specifically, we confirmed that PprS binds within the coding region to stabilize the pprM (DR_0907) transcript, a RDR modulator. Overall, these results are the first to present an additional layer of sRNA-based control in DNA repair pathways associated with bacterial radioresistance.


Subject(s)
Bacterial Proteins/genetics , DNA Repair/radiation effects , Deinococcus/genetics , Deinococcus/radiation effects , Gene Expression Regulation, Bacterial , RNA, Bacterial , Radiation, Ionizing , Bacterial Proteins/metabolism , Deinococcus/growth & development , Models, Biological , Open Reading Frames
6.
PLoS Pathog ; 17(2): e1009305, 2021 02.
Article in English | MEDLINE | ID: mdl-33556144

ABSTRACT

Ionizing radiation-induced tissue damage recruits monocytes into the exposed area where they are differentiated to macrophages. These implement phagocytic removal of dying cells and elicit an acute inflammatory response, but can also facilitate tumorigenesis due to production of anti-inflammatory cytokines. Using primary human monocyte-derived macrophages (MDMs) and the THP1 monocytic cell line, we demonstrate that gamma radiation triggers monocyte differentiation toward the macrophage phenotype with increased expression of type I interferons (IFN-I) and both pro- and anti-inflammatory macrophage activation markers. We found that these changes correlate with significantly upregulated expression of 622 retroelements from various groups, particularly of several clades of human endogenous retroviruses (HERVs). Elevated transcription was detected in both sense and antisense directions in the HERV subgroups tested, including the most genetically homogeneous clade HML-2. The level of antisense transcription was three- to five-fold higher than of the sense strand levels. Using a proximity ligation assay and immunoprecipitation followed by RNA quantification, we identified an increased amount of the dsRNA receptors MDA-5 and TLR3 bound to an equivalent number of copies of sense and antisense chains of HERVK HML-2 RNA. This binding triggered MAVS-associated signaling pathways resulting in increased expression of IFN-I and inflammation related genes that enhanced the cumulative inflammatory effect of radiation-induced senescence. HML-2 knockdown was accompanied with reduced expression and secretion of IFNα, pro-inflammatory (IL-1ß, IL-6, CCL2, CCL3, CCL8, and CCL20) and anti-inflammatory (IL10) modulators in irradiated monocytes and MDMs. Taken together, our data indicate that radiation stress-induced HERV expression enhances the IFN-I and cytokine response and results in increased levels of pro-inflammatory modulators along with expression of anti-inflammatory factors associated with the macrophage tumorigenic phenotype.


Subject(s)
Endogenous Retroviruses/genetics , Gamma Rays , Inflammation/immunology , Macrophage Activation/immunology , Macrophages/immunology , Monocytes/immunology , Retroelements/genetics , Cell Differentiation , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/radiation effects , Monocytes/metabolism , Monocytes/radiation effects , Transcriptome
7.
Front Microbiol ; 11: 613571, 2020.
Article in English | MEDLINE | ID: mdl-33391243

ABSTRACT

The proper functioning of many proteins requires their transport to the correct cellular compartment or their secretion. Signal recognition particle (SRP) is a major protein transport pathway responsible for the co-translational movement of integral membrane proteins as well as periplasmic proteins. Deinococcus radiodurans is a ubiquitous bacterium that expresses a complex phenotype of extreme oxidative stress resistance, which depends on proteins involved in DNA repair, metabolism, gene regulation, and antioxidant defense. These proteins are located extracellularly or subcellularly, but the molecular mechanism of protein localization in D. radiodurans to manage oxidative stress response remains unexplored. In this study, we characterized the SRP complex in D. radiodurans R1 and showed that the knockdown (KD) of the SRP RNA (Qpr6) reduced bacterial survival under hydrogen peroxide and growth under chronic ionizing radiation. Through LC-mass spectrometry (MS/MS) analysis, we detected 162 proteins in the periplasm of wild-type D. radiodurans, of which the transport of 65 of these proteins to the periplasm was significantly reduced in the Qpr6 KD strain. Through Western blotting, we further demonstrated the localization of the catalases in D. radiodurans, DR_1998 (KatE1) and DR_A0259 (KatE2), in both the cytoplasm and periplasm, respectively, and showed that the accumulation of KatE1 and KatE2 in the periplasm was reduced in the SRP-defective strains. Collectively, this study establishes the importance of the SRP pathway in the survival and the transport of antioxidant proteins in D. radiodurans under oxidative stress.

8.
Sci Rep ; 9(1): 11361, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31388021

ABSTRACT

Exposure to chronic ionizing radiation (CIR) from nuclear power plant accidents, acts of terrorism, and space exploration poses serious threats to humans. Fungi are a group of highly radiation-resistant eukaryotes, and an understanding of fungal CIR resistance mechanisms holds the prospect of protecting humans. We compared the abilities of 95 wild-type yeast and dimorphic fungal isolates, representing diverse Ascomycota and Basidiomycota, to resist exposure to five environmentally-relevant stressors: CIR (long-duration growth under 36 Gy/h) and acute (10 kGy/h) ionizing radiation (IR), heavy metals (chromium, mercury), elevated temperature (up to 50 °C), and low pH (2.3). To quantify associations between resistances to CIR and these other stressors, we used correlation analysis, logistic regression with multi-model inference, and customized machine learning. The results suggest that resistance to acute IR in fungi is not strongly correlated with the ability of a given fungal isolate to grow under CIR. Instead, the strongest predictors of CIR resistance in fungi were resistance to chromium (III) and to elevated temperature. These results suggest fundamental differences between the mechanisms of resistance to chronic and acute radiation. Convergent evolution towards radioresistance among genetically distinct groups of organisms is considered here.


Subject(s)
Chromium/toxicity , Drug Resistance, Fungal , Fungi/physiology , Gamma Rays/adverse effects , Hot Temperature/adverse effects , Stress, Physiological , Fungi/drug effects , Fungi/metabolism , Fungi/radiation effects , Hydrogen-Ion Concentration , Mercury/toxicity
9.
PLoS One ; 12(12): e0189261, 2017.
Article in English | MEDLINE | ID: mdl-29261697

ABSTRACT

Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13-126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strains tested, 78 grew under 36 Gy/h. Importantly, we demonstrate that CIR resistance can depend on cell concentration and that certain resistant microbial cells protect their neighbors (not only conspecifics, but even radiosensitive species from a different phylum), from high-level CIR. We apply a mechanistically-motivated mathematical model of CIR effects, based on accumulation/removal kinetics of reactive oxygen species (ROS) and antioxidants, in bacteria (3 Escherichia coli strains and Deinococcus radiodurans) and in fungi (Candida parapsilosis, Kazachstania exigua, Pichia kudriavzevii, Rhodotorula lysinophila, Saccharomyces cerevisiae, and Trichosporon mucoides). We also show that correlations between responses to CIR and acute ionizing radiation (AIR) among studied microorganisms are weak. For example, in D. radiodurans, the best molecular correlate for CIR resistance is the antioxidant enzyme catalase, which is dispensable for AIR resistance; and numerous CIR-resistant fungi are not AIR-resistant. Our experimental findings and quantitative modeling thus demonstrate the importance of investigating CIR responses directly, rather than extrapolating from AIR. Protection of radiosensitive cell-types by radioresistant ones under high-level CIR is a potentially important new tool for bioremediation of radioactive sites and development of CIR-resistant microbiota as radioprotectors.


Subject(s)
Bacteria/radiation effects , Radiation, Ionizing , Yeasts/radiation effects , Bacteria/growth & development , Dose-Response Relationship, Radiation , Humans , Yeasts/growth & development
10.
Proc Natl Acad Sci U S A ; 114(44): E9253-E9260, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29042516

ABSTRACT

Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.


Subject(s)
Antioxidants/metabolism , Manganese/metabolism , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Repair/physiology , Deinococcus/metabolism , Electron Spin Resonance Spectroscopy/methods , Gamma Rays , Humans , Jurkat Cells , Radiation, Ionizing , Superoxide Dismutase/metabolism
11.
Stand Genomic Sci ; 12: 46, 2017.
Article in English | MEDLINE | ID: mdl-28775794

ABSTRACT

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.

12.
Endocr Connect ; 6(7): 469-478, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28790138

ABSTRACT

BACKGROUND: Amifostine is a potent scavenger of reactive oxygen species that is used for the salivary gland protection during therapy with radioactive iodine for thyroid cancer. There are no data on the potential effect of amifostine on thyroid cancer cells. METHODS: We investigated the effects of the active form of amifostine (WR-1065) on the response of thyroid cancer cells to treatment with DNA-damaging agents. WR-1065 was examined in human thyroid cancer cell lines (FTC133, TPC1, BCPAP and C643) and embryonic fibroblast cells NIH3T3. DNA damage was induced by exposure to H2O2 (0.1 mM), by treatment with the radiomimetic neocarzinostatin (NCS 250 ng/mL) and by γ-radiation (6 Gy). DNA damage, cell viability and apoptosis were examined. RESULTS: We demonstrated the selective action of WR-1065 (0.1 mM), which prevented oxidative stress-induced DNA damage in fibroblasts, but did not protect thyroid cancer cells from DNA damage and apoptosis documented by caspase-3 and PARP cleavage after exposure to H2O2, NCS and γ-radiation. Prolonged exposure to WR-1065 (0.1 mM for 24 h) was toxic for thyroid cancer cells; this treatment decreased the number of viable cells by 8% in C643 cells, 47% in TPC cells, 92% in BCPAP cells and 82% in FTC 133 cells. The cytotoxic effects of WR-1065 were not associated with induction of apoptosis. CONCLUSIONS: Our data show that amifostine has no protective effect on thyroid cancer cells against DNA-damaging agents in vitro and suggest that amifostine will not attenuate the efficacy of radioiodine treatment in patients with thyroid cancer.

13.
Front Microbiol ; 8: 2528, 2017.
Article in English | MEDLINE | ID: mdl-29375494

ABSTRACT

Highly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, in situ bioremediation methods are being developed for cleanup of contaminated ground and groundwater. To date, the most developed microbial treatment proposed for high-level radioactive sites employs the radiation-resistant bacterium Deinococcus radiodurans. However, the use of Deinococcus spp. and other bacteria is limited by their sensitivity to low pH. We report the characterization of 27 diverse environmental yeasts for their resistance to ionizing radiation (chronic and acute), heavy metals, pH minima, temperature maxima and optima, and their ability to form biofilms. Remarkably, many yeasts are extremely resistant to ionizing radiation and heavy metals. They also excrete carboxylic acids and are exceptionally tolerant to low pH. A special focus is placed on Rhodotorula taiwanensis MD1149, which was the most resistant to acid and gamma radiation. MD1149 is capable of growing under 66 Gy/h at pH 2.3 and in the presence of high concentrations of mercury and chromium compounds, and forming biofilms under high-level chronic radiation and low pH. We present the whole genome sequence and annotation of R. taiwanensis strain MD1149, with a comparison to other Rhodotorula species. This survey elevates yeasts to the frontier of biology's most radiation-resistant representatives, presenting a strong rationale for a role of fungi in bioremediation of acidic radioactive waste sites.

14.
Front Microbiol ; 5: 708, 2014.
Article in English | MEDLINE | ID: mdl-25566222

ABSTRACT

It is well known that few halophilic bacteria and archaea as well as certain fungi can grow at the highest concentrations of NaCl. However, data about possible life at extremely high concentrations of various others kosmotropic (stabilizing; like NaCl, KCl, and MgSO4) and chaotropic (destabilizing) salts (NaBr, MgCl2, and CaCl2) are scarce for prokaryotes and almost absent for the eukaryotic domain including fungi. Fungi from diverse (extreme) environments were tested for their ability to grow at the highest concentrations of kosmotropic and chaotropic salts ever recorded to support life. The majority of fungi showed preference for relatively high concentrations of kosmotropes. However, our study revealed the outstanding tolerance of several fungi to high concentrations of MgCl2 (up to 2.1 M) or CaCl2 (up to 2.0 M) without compensating kosmotropic salts. Few species, for instance Hortaea werneckii, Eurotium amstelodami, Eurotium chevalieri and Wallemia ichthyophaga, are able to thrive in media with the highest salinities of all salts (except for CaCl2 in the case of W. ichthyophaga). The upper concentration of MgCl2 to support fungal life in the absence of kosmotropes (2.1 M) is much higher than previously determined to be the upper limit for microbial growth (1.26 M). No fungal representatives showed exclusive preference for only chaotropic salts (being obligate chaophiles). Nevertheless, our study expands the knowledge of possible active life by a diverse set of fungi in biologically detrimental chaotropic environments.

15.
Mycologia ; 105(4): 827-36, 2013.
Article in English | MEDLINE | ID: mdl-23709488

ABSTRACT

Microbial mats are a laminated organic-sedimentary ecosystem, found in a wide range of habitats. Fluctuating diel and seasonal physicochemical gradients characterize these ecosystems, resulting in both strata and microenvironments that harbor specific microbial communities. This study was undertaken to compare two types of microbial mats across seasons to further understand the structure of fungal communities in hypersaline microbial mats and their seasonal dynamics. The structure and diversity of fungal communities was documented in young transient and mature hypersaline microbial mats from a tropical region (Puerto Rico) using one culture-dependent and three culture-independent molecular techniques based on the internal transcribed spacer (ITS) region of ribosomal DNA: terminal restriction fragment length polymorphism (TRFLP), denaturing gradient gel electrophoresis (DGGE) and clone libraries. Two microbial mats (one young and transient, one mature) were sampled in Nov 2007 (wet season), Jan 2008 (intermediate season) and Mar 2008 (dry season) in the Cabo Rojo Solar Salterns on the southwestern coast of Puerto Rico. Traditional and molecular techniques revealed strong spatial and temporal heterogeneities in both microbial mats. Higher abundance of isolates and phylotypes were observed during the wet season, and diversity decreased from the top (oxic) to the bottom (anoxic) layers in both seasons. Some of the species isolated belong to the genera Aspergillus, Cladosporium, Hortaea, Pichia and Wallemia, which often are isolated from hypersaline environments. The most abundant clones belong to Acremonium strictum and Cladosporium halotolerans, which were not isolated in pure culture. The differences observed using culture-based and molecular techniques demonstrates the need of combining methods to study the diversity of fungi in a given substrate.


Subject(s)
Ecosystem , Fungi/isolation & purification , Geologic Sediments/microbiology , Denaturing Gradient Gel Electrophoresis , Fungi/genetics , Fungi/growth & development , Polymorphism, Restriction Fragment Length , Puerto Rico , Seasons , Water Microbiology
16.
FEMS Microbiol Ecol ; 77(2): 310-21, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21492196

ABSTRACT

The crustacean genus Artemia naturally inhabits various saline and hypersaline environments and is the most frequently laboratory-hatched animal for live feed in mari- and aquaculture. Because of its high economic importance, Artemia-bacteria interactions were so far studied mostly in laboratory strains. In this study, we focused our attention on the Artemia-associated microbiota in its natural environment in the solar salterns of Eilat, Israel. We applied a culture-independent method (clone libraries) to investigate the bacterial community structure associated with Artemia in five evaporation ponds with salinities from slightly above seawater (5%) to the point of saturation (32%), in two different developmental stages: in nauplii and in the intestine of adult animals. Bacteria found in naupliar and adult stages were classified within the Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Cyanobacteria. The halophilic proteobacterial genera Halomonas spp. and Salinivibrio spp. dominated the Artemia microbiota in both stages in all ponds. We also analysed a clone library of entire adult animals, revealing a novel bacterial phylogenetic lineage. This is the first molecular study of bacteria associated with two developmental stages of Artemia along a salinity gradient.


Subject(s)
Artemia/microbiology , Bacteria/isolation & purification , Seawater/microbiology , Water Microbiology , Animals , Aquaculture , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Gene Library , Israel , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Water/chemistry
17.
FEMS Microbiol Ecol ; 75(1): 48-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21062327

ABSTRACT

The Secovlje saltern is one of the few remaining solar salterns for traditional, seasonal salt production. The bottom of the crystallizer ponds is covered with a microbial mat, known as the 'petola', that has continuously been cultivated from medieval times. Outside the salt production season, the petola is fertilized with anoxic marine mud and covered with saline water; during the season, it is covered by brine. Here, we have applied culture-independent techniques and microelectrode-based activity measurements to study the bacterial communities in three different layers of the petola during the peak of the harvesting season. For reference, we used nonactive petola that had been abandoned for several years. The upper 2 mm of the petola were dominated by the cyanobacterial species Coleofasciculus chthonoplastes and the Phormidium/Lyngbya group, and Gammaproteobacteria (Acinetobacter sp.), while the third anoxic layer was dominated by as yet uncultured phyla. The nonactive petola showed a higher biodiversity. Oxygen and sulfide concentrations differed between the mats studied, in terms of the depth of oxygen penetration and diel changes. This study provides the first molecular insight into the microbiology of the petola, and it represents an important contribution towards understanding the geomicrobiological cycles of the traditional Secovlje saltern.


Subject(s)
Biodiversity , Cyanobacteria/genetics , Gammaproteobacteria/genetics , Water Microbiology , Cyanobacteria/classification , DNA, Bacterial/genetics , Gammaproteobacteria/classification , Gene Library , Oxygen/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Slovenia , Sodium Chloride , Sulfides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...