Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36987107

ABSTRACT

The Lauraceae is a family of the order Laurales, with 2500-3000 species comprising 50 genera, mainly distributed in tropical and subtropical evergreen broad-leaved forests. Up to two decades ago, the systematic classification of the Lauraceae was based on floral morphology, but molecular phylogenetic approaches have made tremendous advances in elucidating tribe- and genus-level relationships within the family in recent decades. Our review focused on the phylogeny and systematics of Sassafras, a genus of three species with highly disjunct distributions in eastern North America and East Asia, whose tribe affiliation within the Lauraceae has long been controversial. By synthesizing information on the floral biology and molecular phylogeny of Sassafras, this review aimed to explore the position of Sassafras within the Lauraceae, and to provide suggestions and implications for future phylogenetic studies. Our synthesis highlighted Sassafras as a transitional type between Cinnamomeae and Laureae with a closer genetic relationship with Cinnamomeae, as revealed by molecular phylogenetic evidence, while it shares many similar characteristics with Laureae in morphology. We therefore discovered that several molecular and morphological methods should be concurrently considered to illuminate the phylogeny and systematics of Sassafras in Lauraceae.

2.
J Ethnobiol Ethnomed ; 18(1): 25, 2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35346263

ABSTRACT

BACKGROUND: Traditional fishing communities are strongholds of ethnobiological knowledge but establishing to what degree they harbor cultural consensus about different aspects of this knowledge has been a challenge in many ethnobiological studies. METHODS: We conducted an ethnobiological study in an artisanal fishing community in northeast Brazil, where we interviewed 91 community members (49 men and 42 women) with different type of activities (fishers and non-fishers), in order to obtain free lists and salience indices of the fish they know. To establish whether there is cultural consensus in their traditional knowledge on fish, we engaged a smaller subset of 45 participants in triad tasks where they chose the most different fish out of 30 triads. We used the similarity matrices generated from the task results to detect if there is cultural consensus in the way fish were classified by them. RESULTS: The findings show how large is the community's knowledge of fish, with 197 ethnospecies registered, of which 33 species were detected as salient or important to the community. In general, men cited more fish than women. We also found that there was no cultural consensus in the ways fish were classified. CONCLUSIONS: Both free-listing and triad task methods revealed little cultural consensus in the way knowledge is structured and how fish were classified by community members. Our results suggest that it is prudent not to make assumptions that a given local community has a single cultural consensus model in classifying the organisms in their environment.


Subject(s)
Fisheries , Hunting , Animals , Brazil , Consensus , Female , Humans , Knowledge
3.
Tree Physiol ; 39(11): 1806-1820, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31768554

ABSTRACT

Climate change scenarios predict increasing atmospheric CO2 concentrations ([CO2]), temperatures and droughts in tropical regions. Individually, the effects of these climate factors on plants are well established, whereas experiments on the interactive effects of a combination of factors are rare. Moreover, how these environmental factors will affect tree species along a wet to dry gradient (e.g., along tropical forest-savanna transitions) remains to be investigated. We hypothesized that under the simulated environmental conditions, plant growth, physiological performance and survivorship would vary in a manner consistent with the species' positions of origin along this gradient. In a glasshouse experiment, we raised seedlings of three Eucalyptus species, each occurring naturally in a wet forest, savanna and forest-savanna ecotone, respectively. We evaluated the effect of drought, elevated temperature (4 °C above ambient glasshouse temperature of 22 °C) and elevated temperature in combination with elevated [CO2] (400 ppm [CO2] above ambient of 400 ppm), on seedling growth, survivorship and physiological responses (photosynthesis, stomatal conductance and water-use efficiency). Elevated temperature under ambient [CO2] had little effect on growth, biomass and plant performance of well-watered seedlings, but hastened mortality in drought-affected seedlings, affecting the forest and ecotone more strongly than the savanna species. In contrast, elevated [CO2] in combination with elevated temperatures delayed the appearance of drought stress symptoms and enhanced survivorship in drought-affected seedlings, with the savanna species surviving the longest, followed by the ecotone and forest species. Elevated [CO2] in combination with elevated temperatures also enhanced growth and biomass and photosynthesis in well-watered seedlings of all species, but modified shoot:root biomass partitioning and stomatal conductance differentially across species. Our study highlights the need for a better understand of the interactive effects of elevated [CO2], temperature and drought on plants and the potential to upscale these insights for understanding biome changes.


Subject(s)
Droughts , Eucalyptus , Carbon Dioxide , Photosynthesis , Seedlings , Temperature
4.
Ecol Evol ; 8(24): 12479-12491, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619559

ABSTRACT

Increased drought is forecasted for tropical regions, with severe implications for the health and function of forest ecosystems. How mature forest trees will respond to water deficit is poorly known. We investigated wood anatomy and leaf traits in lowland tropical forest trees after 24 months of experimental rainfall exclusion. Sampling sun-exposed young canopy branches from target species, we found species-specific systematic variation in hydraulic-related wood anatomy and leaf traits in response to drought stress. Relative to controls, drought-affected individuals of different tree species variously exhibited trait measures consistent with increasing hydraulic safety. These included narrower or less vessels, reduced vessel groupings, lower theoretical water conductivities, less water storage tissue and more abundant fiber in their wood, and more occluded vessels. Drought-affected individuals also had thinner leaves, and more negative pre-dawn or mid-day leaf water potentials. Future studies examining both wood and leaf hydraulic traits should improve the representation of plant hydraulics within terrestrial ecosystem and biosphere models, and help fine-tune predictions of how future climate changes will affect tropical forests globally.

5.
Biodivers Data J ; (4): e7599, 2016.
Article in English | MEDLINE | ID: mdl-27099552

ABSTRACT

BACKGROUND: Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m(2) quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m(2) ha(-1), of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. NEW INFORMATION: We present a floristic checklist, a lifeform breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from comparable-sized plots across the tropics.

6.
PLoS One ; 10(6): e0130799, 2015.
Article in English | MEDLINE | ID: mdl-26087009

ABSTRACT

Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.


Subject(s)
Climate Change , Rainforest , Trees/physiology , Water/metabolism , Australia , Droughts , Models, Biological , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Stems/anatomy & histology , Plant Stems/growth & development , Plant Stems/physiology , Plant Transpiration , Trees/anatomy & histology , Trees/growth & development , Tropical Climate
7.
Front Plant Sci ; 5: 527, 2014.
Article in English | MEDLINE | ID: mdl-25339968

ABSTRACT

Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an "ashbed effect").

8.
PLoS One ; 8(12): e84378, 2013.
Article in English | MEDLINE | ID: mdl-24358359

ABSTRACT

Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.


Subject(s)
Climate , Ecosystem , Plants , Quantitative Trait, Heritable , Trees , Analysis of Variance , Queensland
9.
Ecol Evol ; 2(1): 34-45, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22408724

ABSTRACT

Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO(2) as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire disturbance.

SELECTION OF CITATIONS
SEARCH DETAIL