Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Nutr Diabetes ; 14(1): 28, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755184

ABSTRACT

Proglucagon mRNA expression and GLP-1 secretion by cultured human L-cells (NCI-H716) were inhibited following exposure to λ-carrageenan, a commonly used additive in processed foods. Carrageenan is composed of sulfated or unsulfated galactose residues linked in alternating alpha-1,3 and beta-1,4 bonds and resembles the endogenous sulfated glycosaminoglycans. However, carrageenan has unusual alpha-1,3-galactosidic bonds, which are not innate to human cells and are implicated in immune responses. Exposure to carrageenan predictably causes inflammation, and carrageenan impairs glucose tolerance and contributes to insulin resistance. When cultured human L-cells were deprived overnight of glucose and serum and then exposed to high glucose, 10% FBS, and λ-carrageenan (1 µg/ml) for 10 minutes, 1 h, and 24 h, mRNA expression of proglucagon and secretion of GLP-1 were significantly reduced, compared to control cells not exposed to carrageenan. mRNA expression of proglucagon by mouse L-cells (STC-1) was also significantly reduced and supports the findings in the human cells. Exposure of co-cultured human intestinal epithelial cells (LS174T) to the spent media of the carrageenan-treated L-cells led to a decline in mRNA expression of GLUT-2 at 24 h. These findings suggest that ingestion of carrageenan-containing processed foods may impair the production of GLP-1, counteract the effect of GLP-1 receptor agonists and induce secondary effects on intestinal epithelial cells.


Subject(s)
Carrageenan , Enteroendocrine Cells , Food Additives , Glucagon-Like Peptide 1 , Proglucagon , Carrageenan/pharmacology , Humans , Glucagon-Like Peptide 1/metabolism , Food Additives/pharmacology , Proglucagon/metabolism , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/drug effects , Mice , Animals , RNA, Messenger/metabolism , Cell Line , Glucose/metabolism
3.
Signal Transduct Target Ther ; 9(1): 39, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355690

ABSTRACT

Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.


Subject(s)
COVID-19 , N-Acetylgalactosamine-4-Sulfatase , Mice , Animals , Humans , N-Acetylgalactosamine-4-Sulfatase/metabolism , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Spike Glycoprotein, Coronavirus , Carbohydrate Sulfotransferases , Angiotensin-Converting Enzyme 2 , p38 Mitogen-Activated Protein Kinases/genetics , SARS-CoV-2/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166913, 2024 01.
Article in English | MEDLINE | ID: mdl-37813168

ABSTRACT

In the syngeneic, subcutaneous B16F10 mouse model of malignant melanoma, treatment with exogenous ARSB markedly reduced tumor size and extended survival. In vivo experiments showed that local treatment with exogenous N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) led to reduced tumor growth over time (p < 0.0001) and improved the probability of survival up to 21 days (p = 0.0391). Tumor tissue from the treated mice had lower chondroitin 4-sulfate (C4S) content and lower sulfotransferase activity. The free galectin-3 declined, and the SHP2 activity increased, due to altered binding with chondroitin 4-sulfate. These changes induced effects on transcription, which were mediated by Sp1, phospho-ERK1/2, and phospho-p38 MAPK. Reduced mRNA expression of chondroitin sulfate proteoglycan 4 (CSPG4), carbohydrate sulfotransferase 15 (N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), and matrix metalloproteinases 2 and 9 resulted. Experiments in the human melanoma cell line A375 demonstrated similar responses to exogenous ARSB as in the tumors, and inverse effects followed ARSB siRNA. ARSB, which removes the 4-sulfate group at the non-reducing end of C4S, acts as a tumor suppressor, and treatment with exogenous ARSB impacts on vital cell signaling and reduces the expression of critical genes associated with melanoma progression.


Subject(s)
Melanoma , N-Acetylgalactosamine-4-Sulfatase , Skin Neoplasms , Animals , Humans , Mice , Chondroitin Sulfates/metabolism , Melanoma/drug therapy , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Signal Transduction , Skin Neoplasms/drug therapy , Melanoma, Cutaneous Malignant
5.
J Alzheimers Dis Rep ; 7(1): 527-534, 2023.
Article in English | MEDLINE | ID: mdl-37313486

ABSTRACT

Background: Chondroitin sulfate and chondroitin sulfate proteoglycans have been associated with Alzheimer's disease (AD), and the impact of modified chondroitin sulfates is being investigated in several animal and cell-based models of AD. Published reports have shown the role of accumulation of chondroitin 4-sulfate and decline in Arylsulfatase B (ARSB; B-acetylgalactosamine-4-sulfatase) in other pathology, including nerve injury, traumatic brain injury, and spinal cord injury. However, the impact of ARSB deficiency on AD pathobiology has not been reported, although changes in ARSB were associated with AD in two prior reports. The enzyme ARSB removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate and is required for their degradation. When ARSB activity declines, these sulfated glycosaminoglycans accumulate, as in the inherited disorder Mucopolysaccharidosis VI. Objective: Reports about chondroitin sulfate, chondroitin sulfate proteoglycans, and chondroitin sulfatases in AD were reviewed. Methods: Measurements of SAA2, iNOS, lipid peroxidation, chondroitin sulfate proteoglycan 4 (CSPG4), and other parameters were performed in cortex and hippocampus from ARSB-null mice and controls by QRT-PCR, ELISA, and other standard assays. Results: SAA2 mRNA expression and protein, CSPG4 mRNA, chondroitin 4-sulfate, and iNOS were increased significantly in ARSB-null mice. Measures of lipid peroxidation and redox state were significantly modified. Conclusion: Findings indicate that decline in ARSB leads to changes in expression of parameters associated with AD in the hippocampus and cortex of the ARSB-deficient mouse. Further investigation of the impact of decline in ARSB on the development of AD may provide a new approach to prevent and treat AD.

6.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066366

ABSTRACT

Introduction: Chondroitin sulfate and chondroitin sulfate proteoglycans have been associated with Alzheimer's Disease (AD), and the impact of modified chondroitin sulfates is being investigated in several animal and cell-based models of AD. Published reports have shown the role of accumulation of chondroitin 4-sulfate and decline in Arylsulfatase B (ARSB; B-acetylgalactosamine-4-sulfatase) in other pathology, including nerve injury, traumatic brain injury, and spinal cord injury. However, the impact of ARSB deficiency on AD pathobiology has not been reported, although changes in ARSB were associated with AD in two prior reports. The enzyme ARSB removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate and is required for their degradation. When ARSB activity declines, these sulfated glycosaminoglycans accumulate, as in the inherited disorder Mucopolysaccharidosis VI. Methods: Reports about chondroitin sulfate, chondroitin sulfate proteoglycans and chondroitin sulfatases in Alzheimer's Disease were reviewed. Measurements of SAA2, iNOS, lipid peroxidation, chondroitin sulfate proteoglycan 4, and other parameters were performed in cortex and hippocampus from ARSB-null mice and controls by QRT-PCR, ELISA, and other standard assays. Results: SAA2 mRNA expression and protein, CSPG4 mRNA, chondroitin 4-sulfate and i-NOS were increased significantly in ARSB-null mice. Measures of lipid peroxidation and redox state were significantly modified. Discussion: Findings indicate that decline in ARSB leads to changes in expression of parameters associated with AD in the hippocampus and cortex of the ARSB-deficient mouse. Conclusions: Further investigation of the impact of decline in ARSB on the development of AD may provide a new approach to prevent and treat AD.

7.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361933

ABSTRACT

The enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) was originally identified as a lysosomal enzyme which was deficient in Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy Syndrome). The newly directed attention to the impact of ARSB in human pathobiology indicates a broader, more pervasive effect, encompassing roles as a tumor suppressor, transcriptional mediator, redox switch, and regulator of intracellular and extracellular-cell signaling. By controlling the degradation of chondroitin 4-sulfate and dermatan sulfate by removal or failure to remove the 4-sulfate residue at the non-reducing end of the sulfated glycosaminoglycan chain, ARSB modifies the binding or release of critical molecules into the cell milieu. These molecules, such as galectin-3 and SHP-2, in turn, influence crucial cellular processes and events which determine cell fate. Identification of ARSB at the cell membrane and in the nucleus expands perception of the potential impact of decline in ARSB activity. The regulation of availability of sulfate from chondroitin 4-sulfate and dermatan sulfate may also affect sulfate assimilation and production of vital molecules, including glutathione and cysteine. Increased attention to ARSB in mammalian cells may help to integrate and deepen our understanding of diverse biological phenomenon and to approach human diseases with new insights.


Subject(s)
Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Humans , Chondroitin Sulfates/metabolism , Dermatan Sulfate , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/metabolism , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Sulfates
8.
Pathobiology ; 89(2): 81-91, 2022.
Article in English | MEDLINE | ID: mdl-34788765

ABSTRACT

INTRODUCTION: The potential role of accumulation of chondroitin sulfates (CSs) in the pathobiology of COVID-19 has not been examined. Accumulation may occur by increased synthesis or by decline in activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) which requires oxygen for activity. METHODS: Immunostaining of lung tissue from 28 patients who died due to COVID-19 infection was performed for CS, ARSB, and carbohydrate sulfotransferase (CHST)15. Measurements of mRNA expression of CHST15 and CHST11, sulfotransferase activity, and total sulfated glycosaminoglycans (GAGs) were determined in human vascular smooth muscle cells following angiotensin (Ang) II treatment. RESULTS: CS immunostaining showed increase in intensity and distribution, and immunostaining of ARSB was diminished in COVID-19 compared to normal lung tissue. CHST15 immunostaining was prominent in vascular smooth muscle cells associated with diffuse alveolar damage due to COVID-19 or other causes. Expression of CHST15 and CHST11 which are required for synthesis of CSE and chondroitin 4-sulfate, total sulfated GAGs, and sulfotransferase activity was significantly increased following AngII exposure in vascular smooth muscle cells. Expression of Interleukin-6 (IL-6), a mediator of cytokine storm in COVID-19, was inversely associated with ARSB expression. DISCUSSION/CONCLUSION: Decline in ARSB and resulting increases in CS may contribute to the pathobiology of COVID-19, as IL-6 does. Increased expression of CHSTs following activation of Ang-converting enzyme 2 may lead to buildup of CSs.


Subject(s)
COVID-19 , N-Acetylgalactosamine-4-Sulfatase , Respiratory Insufficiency , Chondroitin Sulfates/metabolism , Glycosaminoglycans/metabolism , Humans , Membrane Glycoproteins , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Sulfotransferases
9.
Oncotarget ; 11(24): 2327-2344, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32595831

ABSTRACT

Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, ß-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, ß-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.

10.
J Diabetes Res ; 2020: 8267980, 2020.
Article in English | MEDLINE | ID: mdl-32377523

ABSTRACT

OBJECTIVES: Carrageenan is well known to cause inflammation and is used in laboratory experiments to study mediators and treatments of inflammation. However, carrageenan is added to hundreds of processed foods to improve texture. Previous work indicated that low concentrations of carrageenan in drinking water caused marked glucose intolerance and insulin resistance in a mouse model. This exploratory, clinical study tested the impact of the no-carrageenan diet in prediabetes. Research Design and Methods. Participants with prediabetes (n = 13), defined as HbA1c of 5.7%-6.4%, enrolled in a 12-week, randomized, parallel-arm, feeding trial. One group (n = 8) was provided all meals and snacks with no carrageenan. A second group (n = 5) received a similar diet with equivalent content of protein, fat, and carbohydrate, but with carrageenan. Blood samples were collected at baseline and during oral glucose tolerance tests at 6 and 12 weeks. The primary outcome measure was changed in %HbA1c between baseline and 12 weeks. Statistical analysis included paired and unpaired t-tests, correlations, and 2 × 2 ANOVAs. RESULTS: Subjects on no carrageenan had declines in HbA1c and HOMA-IR (p = 0.006, p = 0.026; paired t-test, two tailed). They had increases in C-peptide (p = 0.029) and Matsuda Index (2.1 ± 0.7 to 4.8 ± 2.3; p = 0.052) and declines in serum IL-8, serum galectin-3, and neutrophil phospho-(Ser307/312)-IRS1 (p = 0.049, p = 0.003, and p = 0.006; paired t-tests, two tailed). Subjects on the diet with carrageenan had no significant changes in these parameters. Significant differences between no-carrageenan and carrageenan-containing diet groups for changes from baseline to 12 weeks occurred in C-peptide, phospho-Ser-IRS1, phospho-AKT1, and mononuclear cell arylsulfatase B (p = 0.007, p = 0.038, p = 0.0012, and p = 0.0008; 2 × 2 ANOVA). Significant correlations were evident between several of the variables. CONCLUSIONS: Findings indicate improvement in HbA1c and HOMA-IR in participants on no-carrageenan diets, but not in participants on carrageenan-containing diets. Significant differences between groups suggest that removing carrageenan may improve insulin signaling and glucose tolerance. Larger studies are needed to further consider the impact of carrageenan on development of diabetes.


Subject(s)
Carrageenan , Diet , Glucose Intolerance/metabolism , Insulin Resistance/physiology , Prediabetic State/metabolism , Adult , Blood Glucose , Female , Humans , Insulin/metabolism , Male , Middle Aged , Pilot Projects , Young Adult
11.
J Diabetes Res ; 2019: 9582714, 2019.
Article in English | MEDLINE | ID: mdl-31179345

ABSTRACT

Exposure to low concentration of the common food additive carrageenan (10 mg/L) for only six days led to glucose intolerance and insulin resistance in the C57BL/6J mouse. Longer exposure produced fasting hyperglycemia but with no increase in weight, in contrast to the HFD. Glucose intolerance was attributable to carrageenan-induced inflammation and to increased expression of GRB10. Both HFD and carrageenan increased p(Ser32)-IκBα and p(Ser307)-IRS1, and the increases were greater following the combined exposure. The effects of carrageenan were inhibited by the combination of the free radical inhibitor Tempol and BCL10 siRNA, which had no impact on the HFD-mediated increase. In contrast, the PKC inhibitor sotrastaurin blocked the HFD-induced increases, without an effect on the carrageenan-mediated effects. HFD had no impact on the expression of GRB10. Both carrageenan and high fat increased hepatic infiltration by F4/80-positive macrophages. Serum galectin-3 and galectin-3 binding to the insulin receptor increased by carrageenan and by HFD. Tyrosine phosphorylation of the insulin receptor declined following either exposure and was further reduced by their combination. Carrageenan reduced the activity of the enzyme N-acetylgalactosamine-4-sulfatase (ARSB; arylsulfatase B), which was unchanged following HFD. Dietary exposure to both high fat and carrageenan can impair insulin signaling through both similar and distinct mechanisms.


Subject(s)
Carrageenan/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Diet, High-Fat/adverse effects , Insulin Resistance , Animals , B-Cell CLL-Lymphoma 10 Protein/metabolism , Cyclic N-Oxides/pharmacology , Disease Models, Animal , GRB10 Adaptor Protein/metabolism , Galectin 3/metabolism , Gene Expression Regulation , Glucose Intolerance , Hep G2 Cells , Humans , Inflammation , Insulin/metabolism , Liver/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , N-Acetylgalactosamine-4-Sulfatase/metabolism , Protein Binding , RNA, Small Interfering/metabolism , Signal Transduction , Spin Labels , Triglycerides/metabolism
12.
Prostate ; 79(7): 689-700, 2019 05.
Article in English | MEDLINE | ID: mdl-30801800

ABSTRACT

BACKGROUND: In tissue microarrays, immunostaining of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) was less in recurrent prostate cancers and in cancers with higher Gleason scores. In cultured prostate stem cells, decline in ARSB increased Wnt signaling through effects on Dickkopf Wnt Signaling Pathway Inhibitor (DKK)3. The effects of androgen exposure on ARSB and the impact of decline in ARSB on Wnt signaling in prostate tissue were unknown. METHODS: Epithelial and stromal tissues from malignant and normal human prostate were obtained by laser capture microdissection. mRNA expression of ARSB, galactose-6-sulfate-sulfatase (GALNS) and Wnt-signaling targets was determined by QPCR. Non-malignant human epithelial and stromal prostate cells were grown in tissue culture, including two-cell layer cultures. ARSB was silenced by specific siRNA, and epithelial cells were treated with stromal spent media following treatment with IWP-2, an inhibitor of Wnt secretion, and by exogenous recombinant human Wnt3A. Promoter methylation was detected using specific DKK3 and ARSB promoter primers. The effects of DHT and of ARSB overexpression on DKK expression were determined. Cell proliferation was assessed by BrdU incorporation. RESULTS: Normal stroma showed higher expression of vimentin, ARSB, and Wnt3A than epithelium. Normal epithelium had higher expression of E-cadherin, galactose 6-sulfate-sulfatase (GALNS), and DKK3 than stroma. In malignant epithelium, expression of ARSB and DKK3 declined, and expression of GALNS and Wnt signaling targets increased. In cultured prostate epithelial cells, Wnt-mediated signaling was greatest when ARSB was silenced and cells were exposed to exogenous Wnt3A. Exposure to 5α-dihydrotestosterone (DHT) increased ARSB and DKK3 promoter rmethylation, and effects of DHT on DKK3 expression were reversed when ARSB was overexpressed. CONCLUSIONS: Androgen-induced declines in ARSB and DKK3 may contribute to prostate carcinogenesis by sustained activation of Wnt signaling in prostate epithelium in response to stromal Wnt3A.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Androgens/pharmacology , Dihydrotestosterone/pharmacology , N-Acetylgalactosamine-4-Sulfatase/biosynthesis , Prostate/metabolism , Prostatic Neoplasms/metabolism , Wnt3A Protein/biosynthesis , Androgens/administration & dosage , Cell Line , Dihydrotestosterone/administration & dosage , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/metabolism , Humans , Laser Capture Microdissection , Male , Neoplasm Recurrence, Local/metabolism , Prostate/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology
13.
Nutr Healthy Aging ; 5(2): 159-163, 2019.
Article in English | MEDLINE | ID: mdl-31922053

ABSTRACT

This article is an invited response to a critique by industry of our published study about the impact of carrageenan supplement on the interval to relapse in ulcerative colitis patients on a no-carrageenan diet.

14.
J Biol Chem ; 293(28): 11076-11087, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29794138

ABSTRACT

Epidermal growth factor receptor (EGFR) has a crucial role in cell differentiation and proliferation and cancer, and its expression appears to be up-regulated when arylsulfatase B (ARSB or GalNAc-4-sulfatase) is reduced. ARSB removes 4-sulfate groups from the nonreducing end of dermatan sulfate and chondroitin 4-sulfate (C4S), and its decreased expression has previously been reported to inhibit the activity of the ubiquitous protein-tyrosine phosphatase, nonreceptor type 11 (SHP2 or PTPN11). However, the mechanism by which decline in ARSB leads to decline in SHP2 activity is unclear. Here, we show that SHP2 binds preferentially C4S, rather than chondroitin 6-sulfate, and confirm that SHP2 activity declines when ARSB is silenced. The reduction in ARSB activity, and the resultant increase in C4S, increased the expression of EGFR (Her1/ErbB1) in human prostate stem and epithelial cells. The increased expression of EGFR occurred after 1) the decline in SHP2 activity, 2) enhanced c-Jun N-terminal kinase (JNK) activity, 3) increased nuclear DNA binding by c-Jun and c-Fos, and 4) EGFR promoter activation. In response to exogenous EGF, there was increased bromodeoxyuridine incorporation, consistent with enhanced cell proliferation. These findings indicated that ARSB and chondroitin 4-sulfation affect the activation of an important dual phosphorylation threonine-tyrosine kinase and the mRNA expression of a critical tyrosine kinase receptor in prostate cells. Restoration of ARSB activity with the associated reduction in C4S may provide a new therapeutic approach for managing malignancies in which EGFR-mediated tyrosine kinase signaling pathways are active.


Subject(s)
Epithelial Cells/metabolism , MAP Kinase Kinase 4/metabolism , N-Acetylgalactosamine-4-Sulfatase/metabolism , Prostate/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Stem Cells/metabolism , Chondroitin Sulfates/metabolism , Epithelial Cells/cytology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , MAP Kinase Kinase 4/genetics , Male , N-Acetylgalactosamine-4-Sulfatase/genetics , Phosphorylation , Prostate/cytology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction , Stem Cells/cytology
15.
Mol Genet Metab ; 124(2): 168-175, 2018 06.
Article in English | MEDLINE | ID: mdl-29703589

ABSTRACT

BACKGROUND: GPNMB was increased in a CF gene array and in Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase)-null mice, consistent with previous reports that ARSB is reduced in cystic fibrosis (CF). Implications of GPNMB increase in CF are unknown. METHODS: GPNMB levels were determined in serum and circulating leukocytes from CF patients and healthy controls. GPNMB binding with ß-1 integrin and measurements of phospho-ERK1/2 and MMP-9 in CFTR-uncorrected, CFTR-corrected, and normal human bronchial epithelial cells (BEC) were determined, following ARSB and GPNMB knockdown, and treatment with RGD peptide, and ERK phosphorylation inhibitor. RESULTS: GPNMB was markedly increased in CF patients compared to controls (p < 0.0001, unpaired t-test, two-tailed). Silencing GPNMB, treatment with excess RGD peptide, and treatment with ERK phosphorylation inhibitor blocked ARSB silencing-induced increases in MMP-9 in the normal BEC. CONCLUSIONS: Findings suggest that decline in ARSB activity caused by decline in CFTR function leads to increased GPNMB, which may contribute to organ dysfunction in CF by increased MMP-9 expression.


Subject(s)
Biomarkers/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Matrix Metalloproteinase 9/metabolism , Membrane Glycoproteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , N-Acetylgalactosamine-4-Sulfatase/metabolism , Adolescent , Adult , Bronchi/cytology , Bronchi/metabolism , Case-Control Studies , Cells, Cultured , Child , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Male , Phosphorylation , Young Adult
16.
Oncotarget ; 8(59): 100242-100260, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29245974

ABSTRACT

The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/ß-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/ß-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling.

17.
Cancer Biomark ; 21(1): 229-234, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29081414

ABSTRACT

BACKGROUND: Arylsulfatase B (ARSB) removes the 4-sulfate group from chondroitin 4-sulfate (C4S) and dermatan sulfate and is required for their degradation. Prior work showed that ARSB immunohistochemical scores were lower in malignant prostate tissue, and were associated with higher Gleason scores and recurrence. OBJECTIVE: This study aims to confirm that ARSB immunostaining of prostate tissue obtained at the time of radical prostatectomy is prognostic for prostate cancer recurrence. METHODS: Intensity and distribution of ARSB immunostaining were digitally analyzed in a large, well-annotated, prostate cancer tissue microarray (TMA). Scores were calculated for stroma and epithelium and compared for 191 cases, including 36 recurrences, defined as PSA > 0.2 ng/ml. RESULTS: Epithelial scores were significantly lower in the recurrences (p= 0.010), and among subgroups with age > 60, initial PSA > 6 ng/ml, or Gleason grade = 7. ARSB score did not improve the prediction of recurrence in multifactorial analysis. CONCLUSIONS: Study findings validate previous findings and provide further evidence that lower ARSB is associated with prostate cancer recurrence. Additional studies are required to assess if there are specific cutoff values that may help predict recurrence.


Subject(s)
N-Acetylgalactosamine-4-Sulfatase/metabolism , Neoplasm Recurrence, Local , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Humans , Male , Neoplasm Grading , Prognosis , Prostatectomy , Prostatic Neoplasms/surgery , Tissue Array Analysis
18.
Nutr Healthy Aging ; 4(2): 181-192, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28447072

ABSTRACT

BACKGROUND: Carrageenan is a very common food additive in Western diets, but predictably causes inflammation in thousands of cell-based and animal experiments. OBJECTIVE: To assess the impact of carrageenan exposure on the interval to relapse in patients with ulcerative colitis in remission. METHODS: A randomized, double-blind, placebo-controlled, multicenter, clinical trial was conducted to assess if patients with ulcerative colitis in remission would have a longer interval to relapse if they followed a diet with no carrageenan. All participants were instructed in the no-carrageenan diet and were randomized to either placebo capsules or carrageenan-containing capsules. The carrageenan in the capsules was less than the average daily carrageenan intake from the diet. Relapse was defined as an increase of two or more points on the Simple Clinical Colitis Activity Index (SCCAI) and intensification of treatment for ulcerative colitis. Participants were followed by telephone calls every two weeks until relapse or one year of participation. The occurrence of relapse and inflammatory biomarkers were compared between the two groups. RESULTS: Twelve patients completed study questionnaires. Three patients who received carrageenan-containing capsules relapsed, and none of the patients who received placebo-containing capsules relapsed (p = 0.046, log-rank test). Laboratory tests showed increases in Interleukin-6 (p = 0.02, paired t-test, two-tailed) and fecal calprotectin (p = 0.06; paired t-test, two-tailed) between the beginning and the end of study participation in the carrageenan-exposed group, but not in the placebo-group. CONCLUSION: Carrageenan intake contributed to earlier relapse in patients with ulcerative colitis in remission. Restriction of dietary carrageenan may benefit patients with ulcerative colitis.

19.
Oncotarget ; 8(3): 4169-4180, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-27926479

ABSTRACT

Arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) is reduced in several malignancies, but levels in melanoma have not been investigated previously. Experiments were performed in melanoma cell lines to determine ARSB activity and impact on melanoma invasiveness. ARSB activity was reduced ~50% in melanoma cells compared to normal melanocytes. Silencing ARSB significantly increased the mRNA expression of chondroitin sulfate proteoglycan(CSPG)4 and pro-matrix metalloproteinase(MMP)-2, known mediators of melanoma progression. Also, invasiveness and MMP activity increased when ARSB was reduced, and recombinant ARSB inhibited invasiveness and MMP activity. Since the only known function of ARSB is to remove 4-sulfate groups from the N-acetylgalactosamine 4-sulfate residue at the non-reducing end of chondroitin 4-sulfate (C4S) or dermatan sulfate, experiments were performed to determine the transcriptional mechanisms by which expression of CSPG4 and MMP2 increased. Promoter activation of CSPG4 was mediated by reduced binding of galectin-3 to C4S when ARSB activity declined. In contrast, increased pro-MMP2 expression was mediated by increased binding of the non-receptor tyrosine phosphatase SHP2 to C4S. Increased phospho-ERK1,2 resulted from SHP2 inhibition. Combined effects of increased C4S, CSPG4, and MMP2 increased the invasiveness of the melanoma cells, and therapy with recombinant ARSB may inhibit melanoma progression.


Subject(s)
Chondroitin Sulfate Proteoglycans/genetics , Matrix Metalloproteinase 2/genetics , Melanoma/genetics , Membrane Proteins/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Blood Proteins , Cell Line, Tumor , Chondroitin Sulfates/metabolism , Galectin 3/metabolism , Galectins , Humans , N-Acetylgalactosamine-4-Sulfatase/metabolism , Neoplasm Invasiveness , Promoter Regions, Genetic , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
20.
Sci Rep ; 6: 32885, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27605497

ABSTRACT

Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism.


Subject(s)
Hepatocytes/metabolism , Mucopolysaccharidosis VI/enzymology , N-Acetylgalactosamine-4-Sulfatase/metabolism , Animals , Cell Hypoxia , Cell Line , Cell Respiration , Extracellular Space/chemistry , Hepatocytes/enzymology , Hepatocytes/ultrastructure , Humans , Liver/metabolism , Liver/ultrastructure , Mice, Inbred C57BL , Mitochondria/enzymology , Mitochondria/genetics , Mitochondria/ultrastructure , NAD/metabolism , NADP/metabolism , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...