Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36778269

ABSTRACT

Cortical neuronal populations can use a multitude of codes to represent information, each with different advantages and trade-offs. The auditory cortex represents sounds via a sparse code, which lies on the continuum between a localist representation with different cells responding to different sounds, and a distributed representation, in which each sound is encoded in the relative response of each cell in the population. Being able to dynamically shift the neuronal code along this axis may help with a variety of tasks that require categorical or invariant representations. Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons may have distinct effects on population neuronal codes, differentially shifting the encoding of sounds between distributed and localist representations. We stimulated optogenetically SST or VIP neurons while simultaneously measuring the response of populations of hundreds of neurons to sounds presented at different sound pressure levels. SST activation shifted the neuronal population responses toward a more localist code, whereas VIP activation shifted them towards a more distributed code. Upon SST activation, sound representations became more discrete, relying on cell identity rather than strength. In contrast, upon VIP activation, distinct sounds activated overlapping populations at different rates. These shifts were implemented at the single-cell level by modulating the response-level curve of monotonic and nonmonotonic neurons. These results suggest a novel function for distinct inhibitory neurons in the auditory cortex in dynamically controlling cortical population codes.

2.
J Assoc Res Otolaryngol ; 22(6): 601-608, 2021 12.
Article in English | MEDLINE | ID: mdl-34617206

ABSTRACT

Identification of the components of the mechanosensory transduction complex in hair cells has been a major research interest for many auditory and vestibular scientists and has attracted attention from outside the field. The past two decades have witnessed a number of significant advances with emergence of compelling evidence implicating at least a dozen distinct molecular components of the transduction machinery. Yet, how the pieces of this ensemble fit together and function in harmony to enable the senses of hearing and balance has not been clarified. The goal of this review is to summarize a 2021 symposium presented at the annual mid-winter meeting of the Association for Research in Otolaryngology. The symposium brought together the latest insights from within and beyond the field to examine individual components of the transduction complex and how these elements interact at molecular, structural, and biophysical levels to gate mechanosensitive channels and initiate sensory transduction in the inner ear. The review includes a brief historical background to set the stage for topics to follow that focus on structure, properties, and interactions of proteins such as CDH23, PCDH15, LHFPL5, TMIE, TMC1/2, and CIB2/3. We aim to present the diversity of ideas in this field and highlight emerging theories and concepts. This review will not only provide readers with a deeper appreciation of the components of the transduction apparatus and how they function together, but also bring to light areas of broad agreement, areas of scientific controversy, and opportunities for future scientific discovery.


Subject(s)
Hair Cells, Auditory/physiology , Hearing/physiology , Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism
3.
Elife ; 82019 04 01.
Article in English | MEDLINE | ID: mdl-30932811

ABSTRACT

Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell's mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca2+. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.


Subject(s)
Biomechanical Phenomena , Cochlea/cytology , Mechanoreceptors/physiology , Animals , Mechanotransduction, Cellular , Rats, Sprague-Dawley , Stress, Mechanical
4.
Proc Natl Acad Sci U S A ; 112(9): E1000-9, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25691749

ABSTRACT

Hair cells, the sensory receptors of the internal ear, subserve different functions in various receptor organs: they detect oscillatory stimuli in the auditory system, but transduce constant and step stimuli in the vestibular and lateral-line systems. We show that a hair cell's function can be controlled experimentally by adjusting its mechanical load. By making bundles from a single organ operate as any of four distinct types of signal detector, we demonstrate that altering only a few key parameters can fundamentally change a sensory cell's role. The motions of a single hair bundle can resemble those of a bundle from the amphibian vestibular system, the reptilian auditory system, or the mammalian auditory system, demonstrating an essential similarity of bundles across species and receptor organs.


Subject(s)
Hair Cells, Auditory/physiology , Mechanoreceptors/physiology , Mechanotransduction, Cellular/physiology , Animals , Hair Cells, Auditory/cytology , Mammals , Mechanoreceptors/cytology , Rana catesbeiana , Reptiles , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...