Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 57(3): 555-62, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18057092

ABSTRACT

OBJECTIVES: A physiological adaptation to a sugar-rich meal is achieved by increased sugar uptake to match dietary load, resulting from a rapid transient translocation of the fructose/glucose GLUT2 transporter to the brush border membrane (BBM) of enterocytes. The aim of this study was to define the contributors and physiological mechanisms controlling intestinal sugar absorption, focusing on the action of insulin and the contribution of GLUT2-mediated transport. RESEARCH DESIGN AND METHODS: The studies were performed in the human enterocytic colon carcinoma TC7 subclone (Caco-2/TC7) cells and in vivo during hyperinsulinemic-euglycemic clamp experiments in conscious mice. Chronic high-fructose or high-fat diets were used to induce glucose intolerance and insulin resistance in mice. RESULTS AND CONCLUSIONS: In Caco-2/TC7 cells, insulin action diminished the transepithelial transfer of sugar and reduced BBM and basolateral membrane (BLM) GLUT2 levels, demonstrating that insulin can target sugar absorption by controlling the membrane localization of GLUT2 in enterocytes. Similarly, in hyperinsulinemic-euglycemic clamp experiments in sensitive mice, insulin abolished GLUT2 (i.e., the cytochalasin B-sensitive component of fructose absorption), decreased BBM GLUT2, and concomitantly increased intracellular GLUT2. Acute insulin treatment before sugar intake prevented the insertion of GLUT2 into the BBM. Insulin resistance in mice provoked a loss of GLUT2 trafficking, and GLUT2 levels remained permanently high in the BBM and low in the BLM. We propose that, in addition to its peripheral effects, insulin inhibits intestinal sugar absorption to prevent excessive blood glucose excursion after a sugar meal. This protective mechanism is lost in the insulin-resistant state induced by high-fat or high-fructose feeding.


Subject(s)
Enterocytes/drug effects , Enterocytes/metabolism , Glucose Transporter Type 2/metabolism , Insulin Resistance/physiology , Insulin/pharmacology , Animals , Caco-2 Cells , Carbohydrate Metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Enterocytes/ultrastructure , Gene Expression Regulation , Glucose Clamp Technique , Humans , Mice , Microvilli/metabolism , Protein Transport/drug effects , Protein Transport/physiology
2.
J Cell Physiol ; 213(3): 834-43, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17786952

ABSTRACT

Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.


Subject(s)
Cell Polarity , Enterocytes/metabolism , Hexoses/metabolism , Monosaccharide Transport Proteins/metabolism , Sucrose/metabolism , Sweetening Agents/metabolism , Animals , Caco-2 Cells , Cloning, Molecular , Fructose/metabolism , Glucose/metabolism , Glucose Transporter Type 2/chemistry , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 5/genetics , Glucose Transporter Type 5/metabolism , Green Fluorescent Proteins/metabolism , Humans , Jejunum/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monosaccharide Transport Proteins/genetics , Oligo-1,6-Glucosidase/genetics , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA, Messenger/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , Sucrase/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...