Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 117(41): 25609-25617, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32973093

ABSTRACT

Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between "sea butterflies" (Thecosomata; mucus-web feeders) and "sea angels" (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene-Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth's carbon cycle over evolutionary timescales.


Subject(s)
Biological Evolution , Carbon Cycle/physiology , Climate Change , Gastropoda , Plankton , Animals , Calcification, Physiologic/physiology , Fossils , Gastropoda/classification , Gastropoda/genetics , Gastropoda/physiology , Hydrogen-Ion Concentration , Phylogeny , Plankton/classification , Plankton/genetics , Plankton/physiology
2.
Mol Phylogenet Evol ; 148: 106816, 2020 07.
Article in English | MEDLINE | ID: mdl-32289448

ABSTRACT

Invertebrates are exceptionally diverse, but many are in decline because of anthropogenic changes to their habitat. This situation is particularly problematic for taxa that are not well monitored or taxonomically poorly understood, because the lack of knowledge hampers conservation. Despite their important functional role in freshwater ecosystems, African bivalves of the family Unionidae remain poorly studied compared to their highly threatened relatives in Europe, the U.S.A. and Canada. To resolve relationships and to study diversification dynamics in space and time, we performed time-calibrated phylogenetic studies and biogeographical modeling on the unionids from the East African Rift System and surroundings, including representatives of all currently recognized Afrotropical genera except for Brazzaea (and Unio from southern Africa). Our analyses indicate that all sampled Afrotropical unionids belong to the tribe Coelaturini (subfamily Parreysiinae), as does the genus Moncetia from Lake Tanganyika, which is currently attributed to the family Iridinidae. Colonization of Africa from Eurasia by Parreysiinae occurred ~17 Ma ago, and the subsequent diversification of Coelaturini in Africa continued at a steady pace, although net diversification decreased over time as more niches and ecoregions became occupied. Clades in Coelaturini largely reflect drainage basins, with the oldest lineages and highest regional diversity occurring in Lake Tanganyika, followed by the Congo Basin watershed in general. The species assemblage of Lake Tanganyika reflects multiple independent events of colonization and intralacustrine diversification since the Late Miocene or Early Pliocene. The clades of other regions, including that containing the species from Lake Malawi, are comparatively young. Biogeographical analyses indicate that the colonization history was mainly driven by cladogenesis in sympatry, whereas few anagenetic events contributed to the modern distribution of Coelaturini. Ancestral range estimations demonstrate that Coelaturini originated in the Victoria and/or Tanganyika ecoregions, and that the Congo Basin played an essential role in the colonization of Africa by Coelaturini.


Subject(s)
Biodiversity , Ecosystem , Fresh Water , Unionidae/physiology , Africa, Eastern , Animals , Bayes Theorem , Calibration , Fossils , Lakes , Phylogeny , Phylogeography , Species Specificity
3.
Proc Natl Acad Sci U S A ; 115(6): 1174-1179, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29358374

ABSTRACT

Past greenhouse periods with elevated atmospheric CO2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO2, the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ47)-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Casw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

4.
Thomson, Scott A; Pyle, Richard L; Ahyong, Shane T; Alonso-Zarazaga, Miguel; Ammirati, Joe; Araya, Juan Francisco; Ascher, John S; Audisio, Tracy Lynn; Azevedo-Santos, Valter M; Bailly, Nicolas; Baker, William J; Balke, Michael; Barclay, Maxwell V. L; Barrett, Russell L; Benine, Ricardo C; Bickerstaff, James R. M; Bouchard, Patrice; Bour, Roger; Bourgoin, Thierry; Boyko, Christopher B; Breure, Abraham S. H; Brothers, Denis J; Byng, James W; Campbell, David; Ceriaco, Luis M. P; Cernak, Istvan; Cerretti, Pierfilippo; Chang, Chih-Han; Cho, Soowon; Copus, Joshua M; Costello, Mark J; Cseh, Andras; Csuzdi, Csaba; Culham, Alastair; D'Elia, Guillermo; d'Acoz, Cedric d'Udekem; Daneliya, Mikhail E; Dekker, Rene; Dickinson, Edward C; Dickinson, Timothy A; van Dijk, Peter Paul; Dijkstra, Klaas-Douwe B; Dima, Balint; Dmitriev, Dmitry A; Duistermaat, Leni; Dumbacher, John P; Eiserhardt, Wolf L; Ekrem, Torbjorn; Evenhuis, Neal L; Faille, Arnaud; Fernandez-Trianam, Jose L; Fiesler, Emile; Fishbein, Mark; Fordham, Barry G; Freitas, Andre V. L; Friol, Natalia R; Fritz, Uwe; Froslev, Tobias; Funk, Vicki A; Gaimari, Stephen D; Garbino, Guilherme S. T; Garraffoni, Andre R. S; Geml, Jozsef; Gill, Anthony C; Gray, Alan; Grazziotin, Felipe Gobbi; Greenslade, Penelope; Gutierrez, Eliecer E; Harvey, Mark S; Hazevoet, Cornelis J; He, Kai; He, Xiaolan; Helfer, Stephan; Helgen, Kristofer M; van Heteren, Anneke H; Garcia, Francisco Hita; Holstein, Norbert; Horvath, Margit K; Hovenkamp, Peter H; Hwang, Wei Song; Hyvonen, Jaakko; Islam, Melissa B; Iverson, John B; Ivie, Michael A; Jaafar, Zeehan; Jackson, Morgan D; Jayat, J. Pablo; Johnson, Norman F; Kaiser, Hinrich; Klitgard, Bente B; Knapp, Daniel G; Kojima, Jun-ichi; Koljalg, Urmas; Kontschan, Jeno; Krell, Frank-Thorsten; Krisai-Greilhuberm, Irmgard; Kullander, Sven; Latelle, Leonardo; Lattke, John E; Lencioni, Valeria; Lewis, Gwilym P; Lhano, Marcos G; Lujan, Nathan K; Luksenburg, Jolanda A; Mariaux, Jean; Marinho-Filho, Jader; Marshall, Christopher J; Mate, Jason F; McDonough, Molly M; Michel, Ellinor; Miranda, Vitor F. O; Mitroiulm, Mircea-Dan; Molinari, Jesus; Monks, Scott; Moore, Abigail J; Moratelli, Ricardo; Muranyi, David; Nakano, Takafumi; Nikolaeva, Svetlana; Noyes, John; Ohl, Michael; Oleas, Nora H; Orrell, Thomas; Pall-Gergele, Barna; Pape, Thomas; Papp, Viktor; Parenti, Lynne R; Patterson, David; Pavlinov, Igor Ya; Pine, Ronald H; Poczai, Peter; Prado, Jefferson; Prathapan, Divakaran; Rabeler, Richard K; Randall, John E; Rheindt, Frank E; Rhodin, Anders G. J; Rodriguez, Sara M; Rogers, D. Christopher; Roque, Fabio de O; Rowe, Kevin C; Ruedas, Luis A; Salazar-Bravo, Jorge; Salvador, Rodrigo B; Sangster, George; Sarmiento, Carlos E; Schigel, Dmitry S; Schmidt, Stefan; Schueler, Frederick W; Segers, Hendrik; Snow, Neil; Souza-Dias, Pedro G. B; Stals, Riaan; Stenroos, Soili; Stone, R. Douglas; Sturm, Charles F; Stys, Pavel; Teta, Pablo; Thomas, Daniel C; Timm, Robert M; Tindall, Brian J; Todd, Jonathan A; Triebel, Dagmar; Valdecasas, Antonio G; Vizzini, Alfredo; Vorontsova, Maria S; de Vos, Jurriaan M; Wagner, Philipp; Watling, Les; Weakley, Alan; Welter-Schultes, Francisco; Whitmore, Daniel; Wilding, Nicholas; Will, Kipling; Williams, Jason; Wilson, Karen; Winston, Judith E; Wuster, Wolfgang; Yanega, Douglas; Yeates, David K; Zaher, Hussam; Zhang, Guanyang; Zhang, Zhi-Qiang; Zhou, Hong-Zhang.
PLoS. Biol. ; 16(3): e2005075, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15045
5.
PLoS One ; 12(6): e0177325, 2017.
Article in English | MEDLINE | ID: mdl-28604805

ABSTRACT

Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the impacts of ocean acidification and in consequence have attracted considerable research interest, however, a robust evolutionary framework for the group is still lacking. Here we reconstruct their phylogenetic relationships and examine the evolutionary history of pteropods based on combined analyses of Cytochrome Oxidase I, 28S, and 18S ribosomal rRNA sequences and a molecular clock calibrated using fossils and the estimated timing of the formation of the Isthmus of Panama. Euthecosomes with uncoiled shells were monophyletic with Creseis as the earliest diverging lineage, estimated at 41-38 million years ago (mya). The coiled euthecosomes (Limacina, Heliconoides, Thielea) were not monophyletic contrary to the accepted morphology-based taxonomy; however, due to their high rate heterogeneity no firm conclusions can be drawn. We found strong support for monophyly of most euthecosome genera, but Clio appeared as a polyphyletic group, and Diacavolinia grouped within Cavolinia, making the latter genus paraphyletic. The highest evolutionary rates were observed in Heliconoides inflatus and Limacina bulimoides for both 28S and 18S partitions. Using a fossil-calibrated phylogeny that sets the first occurrence of coiled euthecosomes at 79-66 mya, we estimate that uncoiled euthecosomes evolved 51-42 mya and that most extant uncoiled genera originated 40-15 mya. These findings are congruent with a molecular clock analysis using the Isthmus of Panama formation as an independent calibration. Although not all phylogenetic relationships could be resolved based on three molecular markers, this study provides a useful resource to study pteropod diversity and provides general insight into the processes that generate and maintain their diversity in the open ocean.


Subject(s)
Evolution, Molecular , Gastropoda/classification , Gastropoda/genetics , Phylogeny , Animals , Computational Biology/methods , DNA Barcoding, Taxonomic , Fossils , Genes, Mitochondrial , Geography , Panama , Sequence Analysis, DNA
6.
Sci Adv ; 2(8): e1600883, 2016 08.
Article in English | MEDLINE | ID: mdl-27540590

ABSTRACT

The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.


Subject(s)
Biological Evolution , Geology , Oceans and Seas , Phylogeography , Americas , Ecosystem , Environment , Fossils , Paleontology , Panama
7.
Zootaxa ; 3884(5): 445-91, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25543802

ABSTRACT

The Polystira clade (here comprising Polystira and Pleuroliria) is a poorly known but hyper-diverse clade within the neogastropod family Turridae (sensu stricto). It has extensively radiated within the tropics and subtropics of the Americas, to which it is endemic. In this paper we present a synthetic overview of existing information on this radiation together with new information on estimated species diversity, systematic relationships, a species-level molecular phylogenetic analysis and preliminary macroecological and diversification analyses, to serve as a platform for further study. We currently estimate that about 300 species (122 extant) are known from its 36 million year history but this number will undoubtedly increase as we extend our studies. We discuss the relationships of Polystira to other Neotropical Turridae (s.s.) and examine the taxonomy and systematics of the geologically oldest described members of the clade. To aid taxonomic description of shells we introduce a new notation for homologous major spiral cords. Focusing on key publications, we discuss in detail the changing historical understanding of the taxonomy of the clade and the relationships of its component genus-level taxa: Polystira Woodring, 1928, Pleuroliria de Gregorio, 1890, Josephina Gardner, 1945 and Oxytropa Glibert, 1955. We designate a neotype for Pleurotoma (Pleuroliria) supramirifica de Gregorio, 1890, to stabilize our understanding of this, the type species of Pleuroliria. Application of the name Oxytropa is restricted to the type species. The genus Polystira is conchologically re-described and for the first time we synthesize available information on the anatomy, feeding and toxinology, reproduction and life history, larval modes and life habits, and geographic and bathymetric ranges of its species. We give an updated list of the 19 formally described living species and present the pitfalls of the currently poor species-level taxonomy of Polystira using case examples. We present a molecular phylogenetic analysis of 22 extant species using three mitochondrial gene fragments (COI, 12S rRNA and 16S rRNA). This reveals undescribed species and indicates that Recent genetic clades ('biospecies') are consistent with finely divided conchological 'morphospecies'. Historically, there has been a slow realisation of the high species diversity of the Polystira clade and we consider that this may be due to inadequate precision of morphological description of shells and a lack of clear homology statements. We suggest how these both might be improved. Finally, using a data compilation based on museum specimens we examine species range-size distributions and species abundance distributions for 85 of the 112 extant western Atlantic species that we have delimited to date. Our results indicate that the majority of species are rare and have short geographic ranges; only a few are wide-ranging and abundant. This has important implications for surveys of biodiversity.


Subject(s)
Biological Evolution , Gastropoda/classification , Gastropoda/genetics , Animal Shells , Animals , Fossils , Gastropoda/anatomy & histology , Gastropoda/physiology , Oceans and Seas , Species Specificity
8.
Zookeys ; (192): 67-72, 2012.
Article in English | MEDLINE | ID: mdl-22639540

ABSTRACT

A set of terms recommended for use in facilitating communication in biological nomenclature is presented as a table showing broadly equivalent terms used in the traditional Codes of nomenclature. These terms are intended to help those engaged in naming across organism groups, and are the result of the work of the International Committee on Bionomenclature, whose aim is to promote harmonisation and communication amongst those naming life on Earth.

9.
Mol Phylogenet Evol ; 61(1): 231-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21669294

ABSTRACT

Sponges are a conspicuous element in many benthic habitats including in Africa's oldest, deepest lake, Lake Tanganyika. Despite their prevalence and pivotal ecological role as filter feeders, knowledge of the evolutionary history of sponges is in its infancy. Here, we provide the first molecular analysis targeting the evolution of sponges from Lake Tanganyika. Independent markers indicate the occurrence of several colonisation events which have shaped the current Tanganyikan lacustrine sponge biodiversity. This is in contrast to a range of previously studied organisms that have diversified within the lake from single lineages. Our tree reconstructions indicate the presence of two genera, Oncosclera and Eunapius, which are globally distributed. Therefore, we reject the hypothesis of monophyly for the sponges from Lake Tanganyika and challenge existing higher taxonomic structure for freshwater sponges.


Subject(s)
Biological Evolution , DNA Barcoding, Taxonomic , Porifera/classification , Porifera/genetics , Animals , Aquatic Organisms/classification , Aquatic Organisms/genetics , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Evolution, Molecular , Fresh Water , Phylogeny , Porifera/physiology , Ribonucleoproteins/genetics , Tanzania
10.
Proc Natl Acad Sci U S A ; 104(13): 5501-6, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17369359

ABSTRACT

Paleontologists typically treat major episodes of extinction as single and distinct events in which a major environmental perturbation results in a synchronous evolutionary response. Alternatively, the causes of biotic change may be multifaceted and extinction may lag behind the changes ultimately responsible because of nonlinear ecological dynamics. We examined these alternatives for the major episode of Caribbean extinction 2 million years ago (Ma). Isolation of the Caribbean from the Eastern Pacific by uplift of the Panamanian Isthmus was associated with synchronous changes in Caribbean near shore environments and community composition between 4.25 and 3.45 Ma. Seasonal fluctuations in Caribbean seawater temperature decreased 3-fold, carbonate deposition increased, and there was a striking, albeit patchy, shift in dominance of benthic ecosystems from heterotrophic mollusks to mixotrophic reef corals and calcareous algae. All of these changes correspond well with a simple model of decreased upwelling and collapse in planktonic productivity associated with the final stages of the closure of the isthmian barrier. However, extinction rates of mollusks and corals did not increase until 3-2 Ma and sharply peaked between 2 and 1 Ma, even though extinction overwhelmingly affected taxa commonly associated with high productivity. This time lag suggests that something other than environmental change per se was involved in extinction that does not occur as a single event. Understanding cause and effect will require more taxonomically refined analysis of the changing abundance and distribution patterns of different ecological guilds in the 2 million years leading up to the relatively sudden peak in extinction.


Subject(s)
Anthozoa/physiology , Extinction, Biological , Mollusca/physiology , Paleontology/methods , Animals , Biological Evolution , Caribbean Region , Ecology/history , Ecology/methods , Ecosystem , Fossils , History, Ancient , Models, Biological , Models, Statistical , Phylogeny , Time Factors
11.
Mol Ecol ; 16(3): 517-30, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17257110

ABSTRACT

Exceptional ecological niche diversity, clear waters and unique divergent selection pressures have often been invoked to explain high morphological and genetic diversity of taxa within ancient lakes. However, it is possible that in some ancient lake taxa high diversity has arisen because these historically stable environments have allowed accumulation of lineages over evolutionary timescales, a process impossible in neighbouring aquatic habitats undergoing desiccation and reflooding. Here we examined the evolution of a unique morphologically diverse assemblage of thiarid gastropods belonging to the Melanoides polymorpha'complex' in Lake Malawi. Using mitochondrial DNA sequences, we found this Lake Malawi complex was not monophyletic, instead sharing common ancestry with Melanoides anomala and Melanoides mweruensis from the Congo Basin. Fossil calibrations of molecular divergence placed the origins of this complex to within the last 4 million years. Nuclear amplified fragment length polymorphism markers revealed sympatric M. polymorpha morphs to be strongly genetically differentiated lineages, and males were absent from our samples indicating that reproduction is predominantly parthenogenetic. These results imply the presence of Lake Malawi as a standing water body over the last million years or more has facilitated accumulation of clonal morphological diversity, a process that has not taken place in more transient freshwater habitats. As such, the historical stability of aquatic environments may have been critical in determining present spatial distributions of biodiversity.


Subject(s)
Biological Evolution , Ecosystem , Fresh Water , Gastropoda/genetics , Africa, Eastern , Animals , Biodiversity , DNA, Mitochondrial/genetics , Gastropoda/anatomy & histology , Gastropoda/classification , Parthenogenesis , Phylogeny , Polymorphism, Restriction Fragment Length
12.
Science ; 312(5781): 1785-8, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16794076

ABSTRACT

Perforated marine gastropod shells at the western Asian site of Skhul and the North African site of Oued Djebbana indicate the early use of beads by modern humans in these regions. The remoteness of these sites from the seashore and a comparison of the shells to natural shell assemblages indicate deliberate selection and transport by humans for symbolic use. Elemental and chemical analyses of sediment matrix adhered to one Nassarius gibbosulus from Skhul indicate that the shell bead comes from a layer containing 10 human fossils and dating to 100,000 to 135,000 years ago, about 25,000 years earlier than previous evidence for personal decoration by modern humans in South Africa.


Subject(s)
Archaeology , Culture , Symbolism , Algeria , Animals , Burial , Fossils , Geologic Sediments , History, Ancient , Humans , Israel , Museums , Snails
SELECTION OF CITATIONS
SEARCH DETAIL
...