Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 14255, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995803

ABSTRACT

Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that can lead to terminal respiratory failure. Ultrafine carbonaceous particles, which are ubiquitous in ambient urban and indoor air, are increasingly considered as major contributors to the global health burden of air pollution. However, their effects on the expression of CFTR and associated genes in lung epithelial cells have not yet been investigated. We therefore evaluated the effects of carbon nanoparticles (CNP), generated by spark-ablation, on the human bronchial epithelial cell line 16HBE14o- at air-liquid interface (ALI) culture conditions. The ALI-cultured cells exhibited epithelial barrier integrity and increased CFTR expression. Following a 4-h exposure to CNP, the cells exhibited a decreased barrier integrity, as well as decreased expression of CFTR transcript and protein levels. Furthermore, transcriptomic analysis revealed that the CNP-exposed cells showed signs of oxidative stress, apoptosis and DNA damage. In conclusion, this study describes spark-ablated carbon nanoparticles in a realistic exposure of aerosols to decrease CFTR expression accompanied by transcriptomic signs of oxidative stress, apoptosis and DNA damage.


Subject(s)
Cystic Fibrosis , Nanoparticles , Bronchi/metabolism , Carbon/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Nanoparticles/toxicity , Particulate Matter/metabolism
2.
Sci Total Environ ; 627: 689-702, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426194

ABSTRACT

Exposure assessment is a key stage in the risk assessment/management of engineered nanomaterials. Although different sampling strategies and instruments have been used to define the occupational exposure to nano-scale materials, currently there is no international consensus regarding measurement strategy, metrics and limit values. In fact, the assessment of individual exposure to engineered nanomaterials remains a critical issue despite recent innovative developments in personal monitors and samplers. Hence, we used several of these instruments to evaluate the workers' personal exposure in a large research laboratory where engineered nanomaterials are produced, handled, and characterized in order to provide input data for nanomaterial exposure assessment strategies and future epidemiological studies. The results obtained using personal monitors showed that the workplace concentrations of engineered nanomaterials (lung deposited surface area and particle number concentrations) were quite low in all the different workplaces monitored, with short spikes during the execution of some specific job tasks. The sampling strategy was been adopted on the basis of an Organisation for Economic Cooperation and Development (OECD) suggestion for a tiered approach and was found to be suitable for determining the individual exposure and for identifying possible sources of emission, even those with very low emission rates. The use of these instruments may lead to a significant improvement not only in the exposure assessment stage but, more generally, in the entire risk assessment and management process.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring , Inhalation Exposure/analysis , Nanostructures/analysis , Occupational Exposure/analysis , Humans , Inhalation Exposure/statistics & numerical data , Occupational Exposure/statistics & numerical data , Workplace
3.
Sci Total Environ ; 605-606: 929-945, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28688352

ABSTRACT

Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by coincidence, also nearly proportional to the alveolar lung-deposited surface area (LDSA), the metric reported by all three instruments. In addition, the miniDiSC/DiSCmini and the NanoTracer report particle number concentration and mean particle size. In view of their use for personal exposure studies, the comparability of these personal monitors was assessed in two measurement campaigns. Altogether 29 different polydisperse test aerosols were generated during the two campaigns, covering a large range of particle sizes, morphologies and concentrations. The data provided by the personal monitors were compared with those obtained from reference instruments: a scanning mobility particle sizer (SMPS) for LDSA and mean particle size and a ultrafine particle counter (UCPC) for number concentration. The results indicated that the LDSA concentrations and the mean particle sizes provided by all investigated instruments in this study were in the order of ±30% of the reference value obtained from the SMPS when the particle sizes of the test aerosols generated were within 20-400nm and the instruments were properly calibrated. Particle size, morphology and concentration did not have a major effect within the aforementioned limits. The comparability of the number concentrations was found to be slightly worse and in the range of ±50% of the reference value obtained from the UCPC. In addition, a minor effect of the particle morphology on the number concentration measurements was observed. The presence of particles >400nm can drastically bias the measurement results of all instruments and all metrics determined.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , Nanoparticles/analysis , Occupational Exposure/analysis , Wearable Electronic Devices , Aerosols , Humans , Particle Size , Workplace
4.
Sci Total Environ ; 603-604: 793-806, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28431758

ABSTRACT

Exposure to airborne agents needs to be assessed in the personal breathing zone by the use of personal measurement equipment. Specific measurement devices for assessing personal exposure to airborne nanomaterials have only become available in the recent years. They can be differentiated into direct-reading personal monitors and personal samplers that collect the airborne nanomaterials for subsequent analyses. This article presents a review of the available personal monitors and samplers and summarizes the available literature regarding their accuracy, comparability and field applicability. Due to the novelty of the instruments, the number of published studies is still relatively low. Where applicable, literature data is therefore complemented with published and unpublished results from the recently finished nanoIndEx project. The presented data show that the samplers and monitors are robust and ready for field use with sufficient accuracy and comparability. However, several limitations apply, e.g. regarding the particle size range of the personal monitors and their in general lower accuracy and comparability compared with their stationary counterparts. The decision whether a personal monitor or a personal sampler shall be preferred depends strongly on the question to tackle. In many cases, a combination of a personal monitor and a personal sampler may be the best choice to obtain conclusive results.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring , Inhalation Exposure/analysis , Nanostructures/analysis , Occupational Exposure/analysis , Humans , Particle Size , Workplace
5.
Dalton Trans ; 42(2): 330-3, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23147405

ABSTRACT

Addition of [Mo(2)(V)O(2)(µ-O)(µ-S)(aq)](2+) linker-type units to a solution/dynamic library containing tungstates results via the formation of the complementary pentagonal {(W)W(5)} units logically in the self-assembly of a mixed oxide/sulphide {W(VI)(72)Mo(V)(60)}-type Keplerate, thereby demonstrating the ability to tune the capsule's skeletal softness (the (µ-O)(2) and (µ-S)(2) scenarios are known) and providing options to influence differently important capsule-substrate interactions.


Subject(s)
Chalcogens/chemistry , Molybdenum/chemistry , Nanocapsules/chemistry , Oxides/chemistry , Sulfides/chemistry , Tungsten/chemistry , Ligands , Models, Molecular , Molecular Conformation
6.
Chem Commun (Camb) ; 48(3): 350-2, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22038273

ABSTRACT

The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed.


Subject(s)
Metals/chemistry , Oxides/chemistry , Hydrogen-Ion Concentration , Molybdenum/chemistry , Spectrum Analysis, Raman
8.
Chemistry ; 17(35): 9634-9, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21748814

ABSTRACT

The investigation of hydrophobic interactions under confined conditions is of tremendous interdisciplinary interest. It is shown that based on porous capsules of the type {(pentagon)}(12){(linker)}(30) ≡ {(Mo)Mo(5)(12){Mo(2)(ligand)}(30), which exhibit different hydrophobic interiors-achieved by coordinating related ligands to the internal sites of the 30 {Mo(2)} type linkers-there is the option to study systematically interactions with different uptaken/encapsulated hydrophobic molecules like long-chain alcohols as well as to prove the important correlation between the sizes of the related hydrophobic cavities and the option of water encapsulations. The measurements of 1D- and 2D-NMR spectra (e.g. ROESY, NOESY and HSQC) allowed the study of the interactions especially between encapsulated n-hexanol molecules and the hydrophobic interior formed by propionate ligands present in a new synthesized capsule. Future detailed studies will focus on interactions of a variety of hydrophobic species with different deliberately constructed hydrophobic capsule interiors.


Subject(s)
Hexanols/chemistry , Tungsten Compounds/chemistry , Water/chemistry , Capsules , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Porosity
9.
Chemistry ; 17(24): 6635-42, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21542032

ABSTRACT

The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title). Upon standing in air at room temperature, acidified aqueous solutions obtained by dissolving sodium molybdate, iron(II) chloride, acetic acid, and molybdosilicic acid led to the precipitation of monoclinic greenish crystals (1). A rhombohedral variant (2) has also been observed. Upon drying at room temperature, compound 3 with a layer structure was obtained from 1 in a solid-state reaction based on cross-linking of the shells. The compounds 1, 2, and 3 have been characterized by a combination of methods including single-crystal X-ray crystallography, magnetic studies, as well as IR, Mössbauer, (resonance) Raman, and electronic absorption spectroscopy. In connection with detailed studies of the guest-free two-electron-reduced {Mo72Fe30}-type Keplerate (4) and of the previously reported molybdophosphate-based hybrids (including 31P NMR spectroscopy results), it is unambiguously proved that 1, 2, and 3 contain non-reduced Keggin ion cores and reduced {Mo72Fe30}-type shells. The results are discussed in terms of redox considerations (the shell as well as the core can be reduced) including those related to the reduction of "molybdates" by FeII being of interdisciplinary including catalytic interest (the MoVI/MoV and FeIII/FeII couples have very close redox potentials!), while also referring to the special formation of the hybrids based on chemical Darwinism.

10.
Science ; 331(6024): 1590-2, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21436449

ABSTRACT

We report a self-recognition phenomenon based on an assembly process in a homogeneous dilute aqueous solution of two nano-scaled, spherical polyprotic metal oxide-based macroions (neutral species in crystals), also called Keplerates of the type [(linker)30(pentagon)12]≡[{M(H2O)}30{(Mo)Mo5}12] where M is Fe(III) or Cr(III). Upon deprotonation of the neutral species, the resulting macroions assemble into hollow "blackberry"-type structures through very slow homogeneous dimer-oligomerization processes. Although the geometrical surface structures of the two macroions are practically identical, mixtures of these form homogeneous superstructures, rather than mixed species. The phase separation is based on the difference in macroionic charge densities present during the slow homogeneous dimer or oligomer formation. The surface water ligands' residence times of Cr(III) and Fe(III) differ markedly and lead to very different interfacial water mobilities between the Keplerates.

12.
Chem Commun (Camb) ; (23): 3351-3, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19503867

ABSTRACT

The deliberate synthesis of the Keplerate [K(20) subset{(W)W(5)O(21)(SO(4))}(12)(VO)(30)(SO(4))(H(2)O)(63)](18-) with 20 pores all closed by K(+) in a supramolecular fashion proves that it is possible to follow new routes in polyoxotungstate chemistry based on pentagonal {(W)W(5)}-type units and to tune magnetic exchange couplings in {(M)M(5)}(12)M'(30) type Keplerates.

13.
Dalton Trans ; (26): 5094-100, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19562168

ABSTRACT

We report the self-assembly processes in solution of three Keplerate-type molybdenum-oxide based clusters {Mo72V30}, {Mo72Cr30} and {Mo72Fe30} (all with diameters of approximately 2.5 nm). These clusters behave as unique weak polyprotic acids owing to the external water ligands attached to the non-Mo metal centers. Whereas the Cr and Fe clusters have 30 water ligands attached at the 30 M3+ centers pointing outside, {Mo72V30} has 20 water ligands coordinated to vanadium atoms, of which only 10 are pointing outside. The self-assembly processes of the Keplerates leading to supramolecular blackberry-type structures are influenced by the effective charge densities on the cluster surfaces, which can be tuned by the pH values and solvent properties. As expected, {Mo72Cr30} and {Mo72Fe30} behave similarly in aqueous solution due to their analogous structures and in both cases the self-assembly follows the partial deprotonation of the external water ligands attached to the non-Mo metal centers. However, the M-OH2 functionalities differ not only in acidity but also lability, i.e. in different residence times of the H2O ligands. In contrast to {Mo72Cr30} and {Mo72Fe30}, the {Mo72V30} clusters carry a rather large number of negative charges so that their solution properties are different. They exist as discrete macroions in dilute aqueous solution, and form only in mixed water/organic solvent (like acetone) blackberry-type structures whose size increases with acetone content. The comparison of the properties of the clusters allows more general information about the interesting self-assembly phenomenon to be unveiled.

15.
Chemistry ; 14(4): 1186-95, 2008.
Article in English | MEDLINE | ID: mdl-18165953

ABSTRACT

The 16-Fe(III)-containing 48-tungsto-8-phosphate [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) (1) has been synthesised and characterised by IR and ESR spectroscopy, TGA, elemental analyses, electrochemistry and susceptibility measurements. Single-crystal X-ray analyses were carried out on Li(4)K(16)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)]66 H(2)O2 KCl (LiK-1, orthorhombic space group Pnnm, a=36.3777(9) A, b=13.9708(3) A, c=26.9140(7) A, and Z=2) and on the corresponding mixed sodium-potassium salt Na(9)K(11)[P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)].100 H(2)O (NaK-1, monoclinic space group C2/c, a=46.552(4) A, b=20.8239(18) A, c=27.826(2) A, beta=97.141(2) degrees and Z=4). Polyanion 1 contains--in the form of a cyclic arrangement--the unprecedented {Fe(16)(OH)(28)(H(2)O)(4)}(20+) nanocluster, with 16 edge- and corner-sharing FeO(6) octahedra, grafted on the inner surface of the crown-shaped [H(7)P(8)W(48)O(184)](33-) (P(8)W(48)) precursor. The synthesis of 1 was accomplished by reaction of different iron species containing Fe(II) (in presence of O(2)) or Fe(III) ions with the P(8)W(48) anion in aqueous, acidic medium (pH approximately 4), which can be regarded as an assembly process under confined geometries. One fascinating aspect is the possibility to model the uptake and release of iron in ferritin. The electrochemical study of 1, which is stable from pH 1 through 7, offers an interesting example of a highly iron-rich cluster. The reduction wave associated with the Fe(III) centres could not be split in distinct steps independent of the potential scan rate from 2 to 1000 mV s(-1); this is in full agreement with the structure showing that all 16 iron centres are equivalent. Polyanion 1 proved to be efficient for the electrocatalytic reduction of NO(x), including nitrate. Magnetic and variable frequency EPR measurements on 1 suggest that the Fe(III) ions are strongly antiferromagnetically coupled and that the ground state is tentatively spin S=2.


Subject(s)
Ferric Compounds/chemistry , Metals/chemistry , Nanostructures/chemistry , Phosphates/chemistry , Tungsten Compounds/chemistry , Electrochemistry , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Phase Transition , Spectrophotometry, Ultraviolet
17.
Inorg Chem ; 46(17): 7087-92, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-17661461

ABSTRACT

Variable-temperature 17O NMR experiments were conducted on the nanometer-sized Keplerate Mo72Fe30 cluster, with the stoichiometry [Mo72Fe30O252(CH3COO)12[Mo2O7(H2O)]2[H2Mo2O8(H2O)](H2O)91]. approximately 150H2O. This molecule contains on its surface 30 Fe(H2O) groups forming a well-defined icosidodecahedron, and we estimated the rates of exchange of the isolated >FeIII-OH2 waters with bulk aqueous solution. Both longitudinal and transverse 17O-relaxation times were measured, as well as chemical shifts, and these parameters were then fit to the Swift-Connick equations in order to obtain the rate parameters. Correspondingly, we estimate: k(ex)298 = 6.7(+/-0.8) x 106 s-1, which is about a factor of approximately 4 x 104 times larger than the corresponding rate coefficient for the Fe(OH2)63+ ion of k(ex)298 = 1.6 x 102 s-1 (Grant and Jordan, 1981; Inorg. Chem. 20, 55-60) and DeltaH and DeltaS are 26.3 +/- 0.6 kJ mol-1 and -26 +/- 0.9 J mol-1 K-1, respectively. High-pressure 17O NMR experiments were also conducted, but the cluster decomposed slightly under pressure, which precluded confident quantitative estimation of the DeltaV. However, the increase in the reduced transverse-relaxation time with pressure suggests a dissociative character, such as a D or Id mechanism. The enhanced reactivity of waters on the Mo72Fe30 cluster is associated with an increase in the FeIII-OH2 bond length in the solid state of approximately 0.1 A relative to the Fe(OH2)63+ ion, suggesting that a correlation exists between the FeIII-OH2 bond length and k(ex)298. Although there are only few high-spin Fe(III) complexes where both exchange rates and structural data are available, these few seem to support a general correlation.

19.
Chem Commun (Camb) ; (29): 3066-8, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16855687

ABSTRACT

The spherical capsule skeleton of the host-guest system [{Mo6O19}2- subset {Mo(VI)72Fe(III)30O252(CH3COO)20(H2O)92}]4- 1a--built up by 12 {(Mo(VI))Mo(VI)5} type pentagonal units linked by 30 Fe(III) centers which span the unique icosahedral Archimedean solid, the icosidodecahedron--can now be constructed deliberately and with a simpler composition than before from an acidified aqueous molybdate solution containing the mentioned (virtual) pentagonal units; the encapsulated hexamolybdate--normally not formed in water--is built up in an unprecedented way concomitant with capsule growth, while being directed by the corresponding internal electrophilic surface functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...