Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(4): pgae122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628598

ABSTRACT

The recent invasion of the fall armyworm (FAW), a voracious pest, into Africa and Asia has resulted in unprecedented increases in insecticide applications, especially in maize cultivation. The health and environmental hazards posed by these chemicals have prompted a call for alternative control practices. Entomopathogenic nematodes are highly lethal to the FAWs, but their application aboveground has been challenging. In this study, we report on season-long field trials with an innocuous biodegradable gel made from carboxymethyl cellulose containing local nematodes that we specifically developed to target the FAW. In several Rwandan maize fields with distinct climatic conditions and natural infestation rates, we compared armyworm presence and damage in control plots and plots that were treated with either our nematode gel formulation, a commercial liquid nematode formulation, or the commonly used contact insecticide cypermethrin. The treatments were applied to the whorl of each plant, which was repeated three to four times, at 2-week intervals, starting when the plants were still seedlings. Although all three treatments reduced leaf damage, only the gel formulation decreased caterpillar infestation by about 50% and yielded an additional ton of maize per hectare compared with untreated plots. Importantly, we believe that the use of nematodes can be cost-effective, since we used nematode doses across the whole season that were at least 3-fold lower than their normal application against belowground pests. The overall results imply that precisely formulated and easy-to-apply nematodes can be a highly effective, affordable, and sustainable alternative to insecticides for FAW control.

2.
Insects ; 15(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38249066

ABSTRACT

Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic defense proteins of higher fungi. Many of these potentially interesting proteins are protease inhibitors, and some have been shown to adversely affect insects. We examined the effects of the cysteine protease inhibitors macrocypin 1, 3, and 4 from Macrolepiota procera, clitocypin from Clitocybe nebularis, and cocaprin 1 and the serine protease inhibitor cospin 1 from Coprinopsis cinerea on D. v. virgifera. We confirmed the inhibition by mycocypins of the cysteine catalytic-type proteolytic activities in gut extracts of larvae and adults. The inhibition of pGlu-Phe-Leu-hydrolyzing activity was stronger than that of Z-Phe-Arg-hydrolyzing activity. Mycocypins and cospin resisted long-term proteolytic digestion, whereas cocaprin 1 was digested. Bioassays with overlaid artificial diet revealed no effects of proteins on neonatal mortality or stunting, and no effects on adult mortality. Immersion of eggs in protein solutions had little effect on egg hatching or mortality of hatching neonates. Microscopic analysis of the peritrophic matrix and apical surface of the midguts revealed the similarity between larvae of D. v. virgifera and the chrysomelid Leptinotarsa decemlineata, which are sensitive to these inhibitors. The resistance of D. v. virgifera to fungal protease inhibitors is likely due to effective adaptation of digestive enzyme expression to dietary protease inhibitors. We continue to study unique protein complexes of higher fungi for the development of new approaches to pest control.

3.
Article in English | MEDLINE | ID: mdl-37103464

ABSTRACT

Four Gram-negative bacterial strains isolated from Steinernema africanum entomopathogenic nematodes were biochemically and molecularly characterized to determine their taxonomic position. Results of 16S rRNA gene sequencing indicated that they belong to the class Gammaproteobacteria, family Morganellaceae, genus Xenorhabdus, and that they are conspecific. The average 16S rRNA gene sequence similarity between the newly isolated strains and the type strain of its more closely related species, Xenorhabdus bovienii T228T, is 99.4 %. We therefore selected only one of them, XENO-1T, for further molecular characterization using whole genome-based phylogenetic reconstructions and sequence comparisons. Phylogenetic reconstructions show that XENO-1T is closely related to the type strain of X. bovienii, T228T, and to several other strains that are thought to belong to this species. To clarify their taxonomic identities, we calculated average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values. We observed that the ANI and dDDH values between XENO-1T and X. bovienii T228T are 96.3 and 71.2 %, respectively, suggesting that XENO-1T represents a novel subspecies within the X. bovienii species. Noteworthy, the dDDH values between XENO-1T and several other X. bovienii strains are between 68.7 and 70.9 % and ANI values are between 95.8 and 96.4 %, which could be interpreted, in some instances, as that XENO-1T represents a new species. Considering that for taxonomic description the genomic sequences of the type strains are compared, and to avoid future taxonomic conflicts, we therefore propose to assign XENO-1T to a new subspecies within X. bovienii. ANI and dDDH values between XENO-1T and any other of the species with validly published names of the genus are lower than 96 and 70 %, respectively, supporting its novel status. Biochemical tests and in silico genomic comparisons show that XENO-1T exhibit a unique physiological profile that differs from all the Xenorhabdus species with validly published names and from their more closely related taxa. Based on this, we propose that strain XENO-1T represents a new subspecies within the X. bovienii species, for which we propose the name X. bovienii subsp. africana subsp. nov, with XENO-1T (=CCM 9244T=CCOS 2015T) as the type strain.


Subject(s)
Rhabditida , Xenorhabdus , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , Rhabditida/genetics , Rhabditida/microbiology , Nucleic Acid Hybridization , Nucleotides
4.
PLoS One ; 18(2): e0267220, 2023.
Article in English | MEDLINE | ID: mdl-36800363

ABSTRACT

The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.


Subject(s)
Bacillus thuringiensis , Chryseobacterium , Coleoptera , Pesticides , Animals , Zea mays/genetics , Chryseobacterium/metabolism , Pesticides/pharmacology , Endotoxins/metabolism , Bacterial Proteins/metabolism , Plants, Genetically Modified/metabolism , Coleoptera/genetics , Larva/metabolism , Bacillus thuringiensis/genetics , Pest Control, Biological , Insecticide Resistance
5.
J Econ Entomol ; 115(6): 1772-1782, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36515106

ABSTRACT

We here review and discuss management options that growers in Europe could take in response to the expected invasion of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). The focus is put on maize but the information provided is also relevant for other crops potentially affected. A sound forecasting system for fall armyworm both on a regional as well as at local scale should be established to alert growers as early as possible. Whilst a number of cultural control methods are adopted by maize growers in different regions globally to fight fall armyworm, many of them may either not be highly effective, too laborious, or otherwise unfeasible within the mechanized crop production systems used in Europe. Potential is seen in the stimulation of natural enemies through conservation biocontrol approaches, e.g., the planting of flower strips or intermediate cover crops, reducing tillage intensity, and avoiding broad-spectrum insecticides. To manage fall armyworm infestations, several effective biologically-based products are available globally, and some in Europe, e.g., based on specific baculoviruses, certain Bacillus thuringiensis strains, few entomopathogenic nematodes, and a number of botanicals. These should be given priority to avoid a major influx of insecticides into the maize agro-ecosystem once the fall armyworm arrives and in case growers are not prepared. Plant protection companies, particularly biocontrol companies should act proactively in starting registration of ingredients and products against fall armyworm in Europe. European maize growers should be made aware, in time, of key features of this new invasive pest and appropriate control options.


Subject(s)
Insecticides , Moths , Animals , Spodoptera/physiology , Ecosystem , Bacillus thuringiensis Toxins , Zea mays , Crops, Agricultural
6.
J Nematol ; 54(1): 20220049, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36457370

ABSTRACT

Alternatives to hazardous insecticides are urgently needed for an environmentally friendly and effective management of insect pests. One such option is the use of entomopathogenic nematodes (EPN). To increase the availability of EPN with potential for biocontrol, we surveyed agricultural soils in the Republic of Rwanda and collected two Steinernema isolates. Initial molecular characterization showed that they represent a new species, for which we propose the name S. africanum n. sp. To describe this new species, we reconstructed phylogenetic relationships, calculated sequence similarity scores, characterized the nematodes at the morphological level, conducted crossing experiments, and isolated and characterized their symbiotic bacteria. At the molecular level, S. africanum n. sp. is closely related to S. litorale and S. weiseri. At the morphological level, S. africanum n. sp. differs from closely related species by the position of the nerve ring and also because the stoma and pharynx region is longer. The first-generation males have ventrally curved spicules with lanceolate manubrium and fusiform gubernaculum and the second-generation males have rounded manubrium and anteriorly hook-like gubernaculum. Steinernema africanum n. sp. does not mate or produce fertile progeny with any of the closely related species.

7.
Insects ; 13(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35206776

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond.

8.
J Nematol ; 532021.
Article in English | MEDLINE | ID: mdl-34790901

ABSTRACT

Species of the nematode genus Heterorhabditis are important biological control agents against agricultural pests. The taxonomy of this group is still unclear as it currently relies on phylogenetic reconstructions based on a few genetic markers with little resolutive power, specially of closely related species. To fill this knowledge gap, we sequenced several phylogenetically relevant genetic loci and used them to reconstruct phylogenetic trees, to calculate sequence similarity scores, and to determine signatures of species- and population-specific genetic polymorphism. In addition, we revisited the current literature related to the description, synonymisation, and declaration as species inquirendae of Heterorhabditis species to compile taxonomically relevant morphological and morphometric characters, characterized new nematode isolates at the morphological and morphometrical level, and conducted self-crossing and cross-hybridization experiments. The results of this study show that the sequences of the mitochondrial cytochrome C oxidase subunit I (COI) gene provide better phylogenetic resolutive power than the sequences of nuclear rRNA genes and that this gene marker can phylogenetically resolve closely related species and even populations of the same species with high precision. Using this gene marker, we found two new species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. A detailed characterization of these species at the morphological and morphometric levels and nematode reproduction assays revealed that the threshold for species delimitation in this genus, using COI sequences, is 97% to 98%. Our study illustrates the importance of rigorous morphological and morphometric characterization and multi-locus sequencing for the description of new species within the genus Heterorhabditis, serves to clarify the phylogenetic relationships of this important group of biological control agents, and can inform future species descriptions to advance our efforts towards developing more tools for sustainable and environmentally friendly agriculture.

9.
Sci Rep ; 10(1): 8257, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427834

ABSTRACT

Natural enemies of herbivores are expected to adapt to the defence strategies of their preys or hosts. Such adaptations may also include their capacity to cope with plant metabolites that herbivores sequester as a defence. In this study, we evaluated the ability of Mexican entomopathogenic nematodes (EPN) to resist benzoxazinoids that are sequestered from maize roots by the western corn rootworm (WCR, Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae), an important maize pest in America and Europe. From maize fields throughout Mexico, we retrieved 40 EPN isolates belonging to five different species, with a majority identified as Heterorhabditis bacteriophora. In the laboratory, all nematodes readily infected non-sequestering larvae of the banded cucumber beetle (D. balteata), while infectivity varied strongly for WCR larvae. While some H. bacteriophora isolates seemed negatively affected by benzoxazinoids, most showed to be resistant. Thus, EPN from Mexican maize fields can cope with these plant defence metabolites, but the results also indicate that WCR larvae possess other mechanisms that help to resist EPN. This work contributes to a better understanding of the capacity of herbivore natural enemies to resist plant defence metabolites. Furthermore, it identifies several benzoxazinoid-resistant EPN isolates that may be used to control this important maize pest.


Subject(s)
Benzoxazines/pharmacology , Coleoptera/drug effects , Coleoptera/parasitology , Insecticide Resistance , Insecticides/pharmacology , Nematoda/physiology , Plant Diseases/parasitology , Zea mays/parasitology , Animals , Coleoptera/physiology , Herbivory/drug effects , Herbivory/physiology , Larva/drug effects , Larva/parasitology , Larva/physiology , Mexico , Pest Control, Biological
10.
Toxicon ; 89: 67-76, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25064271

ABSTRACT

The Pea Albumin 1 subunit b (PA1b) peptide is an entomotoxin extracted from legume seeds with lethal activity towards several insect pests. Its toxic activity occurs after the perception of PA1b by a plasmalemmic proton pump (V-ATPase) in the insects. Assays revealed that PA1b showed no activity towards mammalian cells displaying high V-ATPase activity. Similarly, PA1b displayed no binding activity and no biological activity towards other non-insect organisms. We demonstrate here that binding to labelled PA1b was found in all the insect families tested, regardless of the sensitivity or insensitivity of the individual species. The coleopteran Bruchidae, which are mainly legume seed pests, were found to be fully resistant. A number of insect species were seen to be insensitive to the toxin although they exhibited binding activity for the labelled PA1b. The fruit fly, Drosophila melanogaster (Diptera), was generally insensitive when maintained on an agar diet, but the fly appeared to be sensitive to PA1b in bioassays using a different diet. In conclusion, the PA1b toxin provides legumes with a major source of resistance to insects, and insects feeding on legume seeds need to overcome this plant resistance by disrupting the PA1b - V-ATPase interaction.


Subject(s)
Fabaceae/chemistry , Insecta/drug effects , Pesticides/toxicity , Plant Proteins/toxicity , Vacuolar Proton-Translocating ATPases/chemistry , Amino Acid Sequence , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Coleoptera/drug effects , Drosophila melanogaster/drug effects , Humans , Insect Proteins/chemistry , Insecticide Resistance , MCF-7 Cells , Mice , Molecular Sequence Data , Osteoclasts/drug effects , Pesticides/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Toxicity Tests
11.
PLoS One ; 7(11): e50129, 2012.
Article in English | MEDLINE | ID: mdl-23189184

ABSTRACT

The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a bayesian analysis of the population structure and in an approximate bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed.


Subject(s)
Coleoptera/genetics , Crosses, Genetic , Genetic Variation , Animals , Bayes Theorem , Europe , Gene Frequency , Microsatellite Repeats , Population Dynamics , Spatio-Temporal Analysis
12.
Evol Appl ; 5(5): 481-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22949923

ABSTRACT

After being used as a biocontrol agent against aphids for decades without harmful consequences, the Asian harlequin ladybird Harmonia axyridis has suddenly become an invasive pest on a worldwide scale. We investigate the impact of captive breeding on several traits of this ladybird such as genetic diversity, fecundity, survival and pathogen resistance. We conducted an experiment in the laboratory to compare the fecundity and the susceptibility to the entomopathogenic fungus Beauveria bassiana of wild and biocontrol adults of H. axyridis. We compiled these new findings with already published data. Altogether, our findings suggest that mass rearing of biological control agents may strongly impact genetic diversity and life-history traits. We discuss how such changes may subsequently affect the fitness of biological control strains in natural environments.

13.
J Pest Sci (2004) ; 83(3): 257-264, 2010 Aug.
Article in English | MEDLINE | ID: mdl-21124754

ABSTRACT

The use of entomopathogenic nematodes is one potential non-chemical approach to control the larvae of the invasive western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe. This study investigated the efficacy of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in reducing D. v. virgifera as a function of soil characteristics. A field experiment was repeated four times in southern Hungary using artificially infested maize plants potted into three different soils. Sleeve gauze cages were used to assess the number of emerging adult D. v. virgifera from the treatments and untreated controls. Results indicate that nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soils than in heavy soils.

14.
Plant Signal Behav ; 5(11): 1450-2, 2010 11.
Article in English | MEDLINE | ID: mdl-21051943

ABSTRACT

We recently showed that the efficacy of an entomopathogenic nematode (EPN) as a biological control agent against a root pest could be enhanced through artificial selection. The EPN Heterorhabditis bacteriophora was selected for higher responsiveness towards (E)-ß-caryophyllene (EßC), a sesquiterpene that is emitted by maize roots in response to feeding damage by the western corn rootworm (WCR). EßC is normally only weakly attractive to H. bacteriophora, which is one of the most infectious nematodes against WCR. By selecting H. bacteriophora to move more readily along a EßC gradient we obtained a strain that was almost twice more efficient in controlling WCR population in fields planted with an EßC-producing maize variety. However, artificial selection for one trait may come at a cost for other important traits such as infectiousness, establishment and/or persistence in the field. Indeed, infectiousness was slightly but significantly reduced in the selected strain. Yet, this apparent cost was largely compensated for by the higher responsiveness to the root signal. Here we show that the selection process had no negative effect on establishment and persistence of field-released EPN. This knowledge, combined with the previously reported results, attest to the feasibility of manipulating key traits to improve the efficacy of beneficial organisms.


Subject(s)
Chemotaxis/genetics , Moths/parasitology , Nematoda/drug effects , Plant Roots/metabolism , Sesquiterpenes/metabolism , Zea mays/metabolism , Animals , Larva/parasitology , Nematoda/genetics , Nematoda/physiology , Polycyclic Sesquiterpenes , Signal Transduction
15.
J Exp Biol ; 213(Pt 14): 2417-23, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20581271

ABSTRACT

The efficacy of natural enemies as biological control agents against insect pests can theoretically be enhanced by artificial selection for high responsiveness to foraging cues. The recent discovery that maize roots damaged by the western corn rootworm (WCR) emit a key attractant for insect-killing nematodes has opened the way to explore whether a selection strategy can improve the control of root pests. The compound in question, (E)-beta-caryophyllene, is only weakly attractive to Heterorhabditis bacteriophora, one of the most infectious nematodes against WCR. To overcome this drawback, we used a six-arm below-ground olfactometer to select for a strain of H. bacteriophora that is more readily attracted to (E)-beta-caryophyllene. After six generations of selection, the selected strain responded considerably better and moved twice as rapidly towards a (E)-beta-caryophyllene source than the original strain. There was a minor trade-off between this enhanced responsiveness and nematode infectiveness. Yet, in subsequent field tests, the selected strain was significantly more effective than the original strain in reducing WCR populations in plots with a maize variety that releases (E)-beta-caryophyllene, but not in plots with a maize variety that does not emit this root signal. These results illustrate the great potential of manipulating natural enemies of herbivores to improve biological pest control.


Subject(s)
Nematoda/physiology , Pest Control, Biological , Plant Roots/parasitology , Signal Transduction/physiology , Zea mays , Animals , Coleoptera/pathogenicity , Nematode Infections , Polycyclic Sesquiterpenes , Selection, Genetic , Sesquiterpenes/metabolism , Zea mays/anatomy & histology , Zea mays/parasitology
16.
Science ; 310(5750): 992, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16284172

ABSTRACT

The invasion of Europe by the western corn rootworm, North America's most destructive corn pest, is ongoing and represents a serious threat to European agriculture. Because this pest was initially introduced in Central Europe, it was believed that subsequent outbreaks in Western Europe originated from this area. Using model-based Bayesian analyses of the genetic variability of the western corn rootworm, we demonstrate that this belief is false: There have been at least three independent introductions from North America during the past two decades. This result raises questions about changing circumstances that have enabled a sudden burst of transatlantic introductions.


Subject(s)
Coleoptera , Zea mays , Animals , Bayes Theorem , Coleoptera/genetics , Computer Simulation , Europe , Genetic Variation , Insect Control , Microsatellite Repeats , North America , Population Dynamics , United States
17.
Nature ; 434(7034): 732-7, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-15815622

ABSTRACT

Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-beta-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E)-beta-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-beta-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.


Subject(s)
Coleoptera/physiology , Plant Diseases/parasitology , Plant Roots/parasitology , Rhabditida/pathogenicity , Sesquiterpenes/metabolism , Zea mays/metabolism , Zea mays/parasitology , Animals , Diffusion , Genotype , Larva/physiology , North America , Plant Leaves/metabolism , Plant Roots/metabolism , Polycyclic Sesquiterpenes , Rhabditida/drug effects , Rhabditida/physiology , Sesquiterpenes/pharmacology , Volatilization , Zea mays/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...