Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol Endocrinol ; 22(1): 83, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020374

ABSTRACT

BACKGROUND: Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS: Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION: Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.


Subject(s)
Fertility , Infertility, Male , Mitochondria , Spermatozoa , Humans , Male , Infertility, Male/physiopathology , Infertility, Male/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Mitochondria/metabolism , Mitochondria/physiology , Fertility/physiology , Sperm Motility/physiology , Female , Reactive Oxygen Species/metabolism , Animals
2.
World J Mens Health ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39028130

ABSTRACT

The effects of smoking on human health have long been documented. However, only a few studies have highlighted the direct effects of nicotine on sperm function. Nicotine, as a chemical compound found in tobacco, has been shown to modulate different aspects of spermatogenesis and sperm functions. Nicotine can lead to a reduction in the number of sperm, their motility and functionality. It can change the molecular expressions involved in sperm function, including genes encoding sperm nuclear proteins. The most important nuclear proteins that play a critical role in sperm function are known as H2B histone family, member W, testis-specific (H2BFWT), transition protein 1 (TNP1), transition protein 2 (TNP2), protamine-1 (PRM1), and protamine-2 (PRM2). These proteins are involved in sperm chromatin condensation, which in turn affects fertilization and embryonic development. Any alteration in the expression of these genes due to nicotine exposure/usage may lead to adverse implications in couples' fertility and the health of future generations. Since research in this area is still relatively new, it underscores the importance of understanding the potential side effects of environmental factors such as nicotine on reproductive health.

3.
Subst Abuse ; 17: 11782218221144547, 2023.
Article in English | MEDLINE | ID: mdl-36618126

ABSTRACT

Objectives: In recent years, smoking water pipes or hookah has increased among adolescents in most countries. Although there is evidence in support of the negative effects of this type of smoking on human health, such as the increased risk of lung disease, little is known about the potential effects of hookah smoking on the male reproductive system, especially on the molecular aspects of sperm. Patients and methods: This cross-sectional study examined sperm DNA fragmentation index, protamine 1 and 2 (PRM1 and PRM2) genes expression, and oxidant status in normozoospermic hookah smokers in comparison with non-smoker controls. Results: Our results showed significantly higher rates of DNA fragmentation, protamine deficiency, and abnormal chromatin condensation in the spermatozoa of hookah smokers (P < .0001). Also, protamine gene expression showed a remarkable decrease in hookah smokers (1.55 ± 2.54 and 0.33 ± 0.54) compared to the controls (3.49 ± 5.41 and 1.22 ± 1.96), although the reduction was not statistically significant (P = .155 and P = .066, respectively). Moreover, a significantly higher level of semen MDA was observed in the case group compared to the controls (0.39 ± 1.04 vs 0.15 ± 0.21; P = .013). Conclusion: According to our study, although hookah smoking does not have a significant effect on sperm parameters, it may have deleterious effects on DNA integrity, oxidative status, and nuclear protein levels of spermatozoa.

SELECTION OF CITATIONS
SEARCH DETAIL