Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 275: 126147, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677170

ABSTRACT

Rapid testing has become an indispensable strategy to identify the most infectious individuals and prevent the transmission of SARS-CoV-2 in vulnerable populations. As such, COVID-19 rapid antigen tests (RATs) are being manufactured faster than ever yet lack relevant comparative analyses required to inform on absolute analytical sensitivity and performance, limiting end-user ability to accurately compare brands for decision making. To date, more than 1000 different COVID-19 RATs are commercially available in the world, most of which detect the viral nucleocapsid protein (NP). Here, we examine and compare the analytical sensitivity of 26 RATs that are readily available in Canada and/or Australia using two NP reference materials (RMs) - a fluorescent NP-GFP expressed in bacterial cells and NCAP-1 produced in a mammalian expression system. Both RMs generate highly comparable results within each RAT, indicating minimal bias due to differing expression systems and final buffer compositions. However, we demonstrate orders of magnitude differences in analytical sensitivities among distinct RATs, and find little correlation with the median tissue culture infectious dose (TCID50) assay values reported by manufacturers. In addition, two COVID-19/Influenza A&B combination RATs were evaluated with influenza A NP-GFP. Finally, important logistics considerations are discussed regarding the robustness, ease of international shipping and safe use of these reference proteins. Taken together, our data highlight the need for and practicality of readily available, reliable reference proteins for end-users that will ensure that manufacturers maintain batch-to-batch quality and accuracy of RATs. They will aid international public health and government agencies, as well as health and aged care facilities to reliably benchmark and select the best RATs to curb transmission of future SARS-CoV-2 and influenza outbreaks.


Subject(s)
Antigens, Viral , COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Canada , Australia , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Humans , COVID-19 Serological Testing/methods , Antigens, Viral/analysis , Antigens, Viral/immunology , Sensitivity and Specificity , Coronavirus Nucleocapsid Proteins/immunology , Animals
2.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240152

ABSTRACT

Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution. As many pathogens continue to build resistance genes, current antibiotic treatments are being rendered useless and the pool of reliable treatments for many MDR-associated diseases is thus shrinking at an alarming rate. In the development of novel antibiotics, DNA replication is still a largely underexplored target. This review summarises critical literature and synthesises our current understanding of DNA replication initiation in bacteria with a particular focus on the utility and applicability of essential initiation proteins as emerging drug targets. A critical evaluation of the specific methods available to examine and screen the most promising replication initiation proteins is provided.


Subject(s)
Bacterial Proteins , DNA Replication , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Bacteria/metabolism , Protein Binding
3.
Talanta Open ; 7: 100187, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36718384

ABSTRACT

Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making. Here, we describe a novel reference standard to measure and compare the analytical sensitivity of RATs using a recombinant GFP-tagged nucleocapsid protein (NP-GFP). Importantly, we show that the GFP tag does not interfere with NP detection and provides several advantages affording streamlined protein expression and purification in high yields as well as faster, cheaper and more sensitive quality control measures for post-production assessment of protein solubility and stability. Ten commercial COVID-19 RATs were evaluated and ranked using NP-GFP as a reference standard. Analytical sensitivity data of the selected devices as determined with NP-GFP did not correlate with those reported by the manufacturers using the median tissue culture infectious dose (TCID50) assay. Of note, TCID50 discordance has been previously reported. Taken together, our results highlight an urgent need for a reliable reference standard for evaluation and benchmarking of the analytical sensitivity of RAT devices. NP-GFP is a promising candidate as a reference standard that will ensure that RAT performance is accurately communicated to healthcare providers and the public.

4.
Microbiol Res ; 263: 127147, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35914414

ABSTRACT

A variety of replication fork traps have recently been characterised in Enterobacterales, unveiling two different types of architecture. Of these, the degenerate type II fork traps are commonly found in Enterobacteriaceae such as Escherichia coli. The newly characterised type I fork traps are found almost exclusively outside Enterobacteriaceae within Enterobacterales and include several archetypes of possible ancestral architectures. Dickeya paradisiaca harbours a somewhat degenerate type I fork trap with a unique Ter1 adjacent to tus gene on one side of the circular chromosome and three putative Ter2-4 sites on the other side of the fork trap. The two innermost Ter1 and Ter2 sites are only separated by 18 kb, which is the shortest distance between two innermost Ter sites of any chromosomal fork trap identified so far. Of note, the dif site is located between these two sites, coinciding with a sharp GC-skew flip. Here we examined and compared the binding modalities of E. coli and D. paradisiaca Tus proteins for these Ter sites. Surprisingly, while Ter1-3 were functional, no significant Tus binding was observed for Ter4 even in low salt conditions, which is in stark contrast with the significant non-specific protein-DNA interactions that occur with E. coli Tus. Even more surprising was the finding that D. paradisiaca Tus has a relatively moderate binding affinity to double-stranded Ter while retaining an extremely high affinity to Ter-lock sequences. Our data revealed major differences in the salt resistance and stability between the D. paradisiaca and E. coli Tus protein complexes, suggesting that while Tus protein evolution can be quite flexible regarding the initial Ter binding step, it requires a highly stringent purifying selection for its final locked complex formation.


Subject(s)
DNA Replication , Dickeya/metabolism , Escherichia coli Proteins , Escherichia coli , Chromosomes/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism
5.
Anal Chim Acta ; 1213: 339946, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35641065

ABSTRACT

Tus is a protein involved in DNA replication termination that binds specific DNA sequences (Ter) located around the terminus region of the chromosome in Enterobacterales. Tus and Ter form a unique monomeric protein-DNA complex which is one of strongest of its kind. A fascinating aspect of Tus-Ter is its ability to dramatically change conformation into a locked structure upon progression of a replication fork towards the non-permissive face of the complex. Over the last two decades, several new technologies have emerged harnessing the unique and interesting properties of this fascinating DNA-binding protein. This review highlights the important properties of the Tus-Ter complex and their exploitation for the development of diverse and novel ultrasensitive detection devices as well as innovative genomic and proteomic platform technologies. A variety of ex vivo and in vivo bioanalytical applications are discussed, including immuno-PCR diagnostic, bioassay and protein array technologies that are broadly relevant to the fields of cancer biology, microbiology and immunology. A perspective on future research and applications is provided.


Subject(s)
Bacterial Proteins , DNA-Binding Proteins , Bacterial Proteins/genetics , DNA Replication , DNA-Binding Proteins/genetics , Enterobacteriaceae , Proteomics
6.
Int J Mol Sci ; 22(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34948327

ABSTRACT

In Escherichia coli, DNA replication termination is orchestrated by two clusters of Ter sites forming a DNA replication fork trap when bound by Tus proteins. The formation of a 'locked' Tus-Ter complex is essential for halting incoming DNA replication forks. However, the absence of replication fork arrest at some Ter sites raised questions about their significance. In this study, we examined the genome-wide distribution of Tus and found that only the six innermost Ter sites (TerA-E and G) were significantly bound by Tus. We also found that a single ectopic insertion of TerB in its non-permissive orientation could not be achieved, advocating against a need for 'back-up' Ter sites. Finally, examination of the genomes of a variety of Enterobacterales revealed a new replication fork trap architecture mostly found outside the Enterobacteriaceae family. Taken together, our data enabled the delineation of a narrow ancestral Tus-dependent DNA replication fork trap consisting of only two Ter sites.


Subject(s)
DNA Replication/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genome, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...