Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 246: 110015, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089568

ABSTRACT

Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Retina , Transcriptome , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Animals , Mice , Retina/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice, Inbred C57BL , Gene Expression Profiling , Mice, Knockout , Gene Expression Regulation/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL