Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 676: 6-12, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37480690

ABSTRACT

Phenotypic screening is gaining attention as a powerful method for identifying compounds that regulate cellular phenotypes of interest through novel mechanisms of action. Recently, a new modality of compounds, called molecular glues, which can induce the degradation of target proteins by forming ternary complexes of E3 ligases, has emerged from phenotypic screening. In this study, using global proteomic analysis, we identified a novel Cyclin K degrader, T4, which was previously discovered through phenotypic screening for alternative polyadenylation regulation. Our detailed mechanistic analysis revealed that T4 induced Cyclin K degradation, leading to the regulation of alternative polyadenylation. Additionally, we generated a more potent Cyclin K degrader, TR-213, through a structure-activity relationship study of T4. T4 and TR-213 are structurally distinct from other Cyclin K degraders and can be used as novel chemical tools to further analyze the degradation of Cyclin K and the regulation of alternative polyadenylation.


Subject(s)
Polyadenylation , Proteomics , Cyclins , Proteolysis , Structure-Activity Relationship
2.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36630286

ABSTRACT

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Subject(s)
Antimalarials , Plasmodium , Humans , Animals , Mice , Antimalarials/pharmacology , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Structure-Activity Relationship , Plasmodium falciparum/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
3.
J Med Chem ; 65(13): 9350-9375, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35727231

ABSTRACT

With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Peptides/therapeutic use , Plasmodium falciparum , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Protozoan Proteins/genetics
4.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33949190

ABSTRACT

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Subject(s)
Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Humans , Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/chemistry , Structure-Activity Relationship
5.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33433953

ABSTRACT

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Subject(s)
Antimalarials/pharmacology , Drug Development , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Malaria, Falciparum/metabolism , Mice , Models, Molecular , Molecular Conformation , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry
6.
J Med Chem ; 61(17): 7710-7728, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30067358

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality. Here, we report the discovery of 3-benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective CDK12 inhibitors. Structure-activity relationship studies of a HTS hit, structure-based drug design, and conformation-oriented design using the Cambridge Structural Database afforded the optimized compound 2, which exhibited not only potent CDK12 (and CDK13) inhibitory activity and excellent selectivity but also good physicochemical properties. Furthermore, 2 inhibited the phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and induced growth inhibition in SK-BR-3 cells. Therefore, 2 represents an excellent chemical probe for functional studies of CDK12 and could be a promising lead compound for drug discovery.


Subject(s)
Breast Neoplasms/drug therapy , Cell Survival , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Enzyme Inhibitors/chemistry , Female , Humans , Phosphorylation , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Chemistry ; 18(31): 9682-90, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22760948

ABSTRACT

The total syntheses of (+)-polygalolide A and (+)-polygalolide B have been completed by using a carbonyl ylide cycloaddition strategy. Three of the four stereocenters, including two consecutive tetrasubstituted carbon atoms at C2 and C8, were incorporated through internal asymmetric induction from the stereocenter at C7 by a [Rh(2) (OAc)(4)]-catalyzed carbonyl ylide formation/intramolecular 1,3-dipolar cycloaddition sequence. The arylmethylidene moiety of these natural products was successfully installed by a Mukaiyama aldol-type reaction of a silyl enol ether with a dimethyl acetal, followed by elimination under basic conditions. We have also developed an alternative approach to the carbonyl ylide precursor based on a hetero-Michael reaction. This approach requires 18 steps, and the natural products were obtained in 9.8 and 9.3 % overall yields. Comparison of specific rotations of the synthetic materials and natural products suggests that polygalolides are biosynthesized in nearly racemic forms through a [5+2] cycloaddition between a fructose-derived oxypyrylium zwitterion with an isoprene derivative.


Subject(s)
Phenols/chemical synthesis , Catalysis , Molecular Structure , Phenols/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...