Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791359

ABSTRACT

The excessive activation of frog eggs, referred to as overactivation, can be initiated by strong oxidative stress, leading to expedited calcium-dependent non-apoptotic cell death. Overactivation also occurs spontaneously, albeit at a low frequency, in natural populations of spawned frog eggs. Currently, the cytological and biochemical events of the spontaneous process have not been characterized. In the present study, we demonstrate that the spontaneous overactivation of Xenopus frog eggs, similarly to oxidative stress- and mechanical stress-induced overactivation, is characterized by the fast and irreversible contraction of the egg's cortical layer, an increase in egg size, the depletion of intracellular ATP, a drastic increase in the intracellular ADP/ATP ratio, and the degradation of M phase-specific cyclin B2. These events manifest in eggs in the absence of caspase activation within one hour of triggering overactivation. Importantly, substantial amounts of ATP and ADP leak from the overactivated eggs, indicating that plasma membrane integrity is compromised in these cells. The rupture of the plasma membrane and acute depletion of intracellular ATP explicitly define necrotic cell death. Finally, we report that egg overactivation can occur in the frog's genital tract. Our data suggest that mechanical stress may be a key factor promoting egg overactivation during oviposition in frogs.


Subject(s)
Adenosine Triphosphate , Necrosis , Ovum , Animals , Adenosine Triphosphate/metabolism , Ovum/metabolism , Xenopus laevis/metabolism , Female , Oxidative Stress , Adenosine Diphosphate/metabolism , Cell Death , Cell Membrane/metabolism , Stress, Mechanical
2.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36552641

ABSTRACT

Excessive activation of frog eggs (overactivation) is a pathological process that renders eggs unfertilizable. Its physiological inducers are unknown. Previously, oxidative stress was shown to cause time- and dose-dependent overactivation of Xenopus laevis frog eggs. Here, we demonstrate that the oxidative stress-induced egg overactivation is a calcium-dependent phenomenon which can be attenuated in the presence of the selective calcium chelator BAPTA. Degradation of cyclin B2, which is known to be initiated by calcium transient in fertilized or parthenogenetically activated eggs, can also be observed in the overactivated eggs. Decline in mitochondrial membrane potential, ATP depletion and termination of protein synthesis manifest in the eggs within one hour of triggering overactivation. These intracellular events occur in the absence of caspase activation. Furthermore, plasma membrane integrity is compromised in the overactivated eggs, as evidenced by ATP leakage and egg swelling. In sum, our data demonstrate that oxidative stress-induced overactivation of frog eggs causes fast and dramatic disruption of cellular homeostasis, resulting in robust and expedited cell death by a calcium-dependent non-apoptotic mechanism.

3.
Front Mol Biosci ; 8: 775736, 2021.
Article in English | MEDLINE | ID: mdl-34912847

ABSTRACT

The protein isoelectric point (pI) can be calculated from an amino acid sequence using computational analysis in a good agreement with experimental data. Availability of whole-genome sequences empowers comparative studies of proteome-wide pI distributions. It was found that the whole-proteome distributions of protein pI values are multimodal in different species. It was further hypothesized that the observed multimodality is associated with subcellular localization-specific differences in local pI distributions. Here, we overview the multimodality of proteome-wide pI distributions in different organisms focusing on the relationships between protein pI and subcellular localization. We also discuss the probable factors responsible for variation of the intracellular localization-specific pI profiles.

4.
Antioxidants (Basel) ; 10(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34356301

ABSTRACT

Aging of oocytes and eggs diminishes their reproductive and developmental potential. It has been demonstrated previously that reactive oxygen species (ROS) contribute to accelerated aging of various cells. In the present study, we measured intracellular levels of ROS and investigated effects of several selective antioxidants (AOXs) on the viability and functional activity of aging oocytes and eggs of the African clawed frog Xenopus laevis. The fluorescent cell-permeable dye DCFDA, which is widely employed for ROS detection in cultured mammalian cells, was used to monitor ROS levels in the fresh and bench-aged oocytes and eggs by an optimized protocol. It was found that intracellular ROS contents were increased in frog oocytes and eggs aged for 48 h. It was further demonstrated using selective cell-permeable AOXs targeting different ROS-generating mechanisms, that the major source of ROS in Xenopus oocytes and eggs is the plasma membrane NADPH oxidase, and that mitochondrial generation contributes to the intracellular ROS content to a lesser extent. Targeted inhibition of NADPH oxidase with a natural organic compound apocynin reduced ROS levels significantly in Xenopus oocytes and eggs, maintained their normal phenotype and supported their functional competence. To our knowledge this is the first report concerning beneficial effects of apocynin on the isolated gamete cells, such as oocytes and eggs.

5.
Front Cell Dev Biol ; 8: 605379, 2020.
Article in English | MEDLINE | ID: mdl-33363163

ABSTRACT

Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.

6.
Reprod Med Biol ; 19(2): 114-119, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273815

ABSTRACT

BACKGROUND: For the past more than 25 years, we have been focusing on the developmental and reproductive biology of the female gametes, oocytes, and eggs, of the African clawed frog Xenopus laevis. METHODS: The events associated with the life cycle of these cells can be classified into the four main categories: first, oogenesis and cell growth in the ovary during the first meiotic arrest; second, maturation and ovulation that occur simultaneously and result in the acquisition of fertilization competence and the second meiotic arrest; third, fertilization, that is sperm-induced transition from egg to zygote; and fourth, egg death after spontaneous activation in the absence of fertilizing sperm. MAIN FINDINGS: Our studies have demonstrated that signal transduction system involving tyrosine kinase Src and other oocyte/egg membrane-associated molecules such as uroplakin III and some other cytoplasmic proteins such as mitogen-activated protein kinase (MAPK) play important roles for successful ovulation, maturation, fertilization, and initiation of embryonic development. CONCLUSION: We summarize recent advances in understanding cellular and molecular mechanisms underlying life cycle events of the oocytes and eggs. Our further intention is to discuss and predict potentially promising impact of the recent findings on the challenges facing reproductive biology and medicine, as well as societal contexts.

7.
Int J Mol Sci ; 20(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561408

ABSTRACT

Progesterone is widely used to induce maturation of isolated fully grown oocytes of the African clawed frog, Xenopus laevis. However, the hormone fails to release oocytes from the layer of surrounding follicle cells. Here, we report that maturation and follicle rupture can be recapitulated in vitro by treating isolated follicular oocytes with progesterone and low doses of the matrix metalloproteinase (MMP), collagenase, which are ineffective in the absence of the steroid. Using this in vitro ovulation model, we demonstrate that germinal vesicle breakdown (GVBD) and oocyte liberation from ovarian follicles occur synchronously during ovulation. Inhibition of the MAPK pathway in these experimental settings suppresses both GVBD and follicular rupture, whereas inhibition of MMP activity delays follicular rupture without affecting GVBD. These results highlight importance of MAPK and MMP activities in the ovulation process and provide the first evidence for their involvement in the release of oocytes from ovarian follicles in frogs. The in vitro ovulation model developed in our study can be employed for further dissection of ovulation.


Subject(s)
Oocytes/physiology , Ovulation , Xenopus laevis/physiology , Animals , Cell Culture Techniques , Cells, Cultured , Female , Gonadal Steroid Hormones , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology , Oocytes/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Ovulation/drug effects , Sexual Maturation
8.
BMC Mol Cell Biol ; 20(1): 36, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31429701

ABSTRACT

BACKGROUND: Whole-proteome distributions of protein isoelectric point (pI) values in different organisms are bi- or trimodal with some variations. It was suggested that the observed multimodality of the proteome-wide pI distributions is associated with subcellular localization-specific differences in the local pI distributions. However, the factors responsible for variation of the intracellular localization-specific pI profiles have not been investigated in detail. RESULTS: In this work, we explored proteome-wide pI distributions of 32,138 human proteins predicted to reside in 10 subcellular compartments, as well as the pI distributions of experimentally observed lysosomal and Golgi proteins. The distributions were found to differ significantly, although all of them adhered to the major recurrent bimodal pattern. Grossly, acid-biased and alkaline-biased patterns with various minor statistical features were observed at different subcellular locations. Bioinformatics analysis revealed the existence of strong statistically significant correlations between protein pI and subcellular localization. Most markedly, protein pI was found to correlate positively with nuclear and mitochondrial locations and negatively with cytoskeletal, cytoplasmic, lysosomal and peroxisomal environment. Further analysis demonstrated that subcellular compartment-specific pI distributions are greatly influenced by local pH and organelle membrane charge. Multiple nonlinear regression analysis identified a polynomial function of the two variables that best fitted the mean pI values of the localization-specific pI distributions. A high coefficient of determination calculated for this regression (R2 = 0.98) suggests that local pH and organelle membrane charge are the major factors responsible for variation of the intracellular localization-specific pI profiles. CONCLUSIONS: Our study demonstrates that strong correlations exist between protein pI and subcellular localization. The specific pI distributions at different subcellular locations are defined by local environment. Predominantly, it is the local pH and membrane charge that shape the organelle-specific protein pI patterns. These findings expand our understanding of spatial organization of the human proteome.


Subject(s)
Cell Membrane/metabolism , Proteome/metabolism , Golgi Apparatus/metabolism , Humans , Hydrogen-Ion Concentration , Isoelectric Point , Lysosomes/metabolism , Regression Analysis , Subcellular Fractions/metabolism
9.
Biomed Res Int ; 2019: 7180540, 2019.
Article in English | MEDLINE | ID: mdl-31341903

ABSTRACT

Egg overactivation occurs with a low frequency in the populations of naturally ovulated frog eggs. At present, its natural inducers, molecular mechanisms, and intracellular events remain unknown. Using microscopic and biochemical analyses, we demonstrate here that high levels of hydrogen peroxide-induced oxidative stress can cause time- and dose-dependent overactivation of Xenopus eggs. Lipofuscin accumulation, decrease of soluble cytoplasmic protein content, and depletion of intracellular ATP were found to take place in the overactivated eggs. Progressive development of these processes suggests that egg overactivation unfolds in a sequential and ordered fashion.


Subject(s)
Hydrogen Peroxide/pharmacology , Lipofuscin/metabolism , Oocytes/metabolism , Oxidative Stress/drug effects , Xenopus Proteins/metabolism , Animals , Dose-Response Relationship, Drug , Female , Xenopus laevis
10.
Biochem Biophys Res Commun ; 517(1): 140-145, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31320137

ABSTRACT

Mitogen-activated protein kinases (MAPKs) are involved in the regulation of various cellular processes, including cell survival and apoptosis. Here, we report that Xenopus p42 MAPK becomes phosphorylated in apoptotic eggs, however this modification does not activate the enzyme. Using phosphorylation residue-specific antibodies, we demonstrate that this modification occurs on the Tyr residue in the MAPK activation segment, pinpointing the autophosphorylation mechanism. Notably, MAPK phosphorylation in apoptotic Xenopus eggs coincides with prominent intracellular acidification accompanying apoptosis in these cells. Furthermore, autophosphorylation of recombinant Xenopus MAPK is stimulated and phosphorylation of a protein substrate is inhibited under low pH conditions. Thus, acidic intracellular conditions inactivate MAPK and effectively disable the MAPK-mediated survival pathway in the apoptotic eggs. Given that cell acidification is a rather common feature of apoptosis, we hypothesize that stimulation of MAPK autophosphorylation and shutdown of the MAPK pathway may represent universal traits of apoptotic cell death.


Subject(s)
MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Ovum/cytology , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , Apoptosis , Cells, Cultured , Enzyme Activation , Female , Models, Molecular , Oocytes/cytology , Oocytes/enzymology , Oocytes/metabolism , Ovum/enzymology , Ovum/metabolism , Phosphorylation
11.
Exp Gerontol ; 119: 157-167, 2019 05.
Article in English | MEDLINE | ID: mdl-30769028

ABSTRACT

Senescence-associated ß-galactosidase (SA-ß-gal) serves as a marker of senescence in aging somatic cells. However, little is known about SA-ß-gal dynamics in aging gamete cells. To address this issue, here we investigated activity and intracellular localization of SA-ß-gal in freshly obtained and aging oocytes and eggs of the African clawed frog Xenopus laevis. Data base mining revealed the presence of several homologous ß-galactosidase sequences in the annotated Xenopus genome. Some of them were predicted to contain an N-terminal signal peptide sequence, suggesting enzyme translocation to cellular organelles. Biochemical and microscopic analyses confirmed SA-ß-gal localization in the particulate and cytosolic fractions of oocytes and eggs. SA-ß-gal activity was found to reside predominantly within a fraction of dense cytoplasmic granules that were extensively stained with the lysosome-specific dye LysoTracker Green DND-26 and had an average size of 8.9 ±â€¯5.6 µm. These features identify the SA-ß-gal-containing granules as a subpopulation of yolk platelets, specialized late endosomes or lysosomes that accumulate and store processed protein in frog oocytes. Further analysis revealed an increase of SA-ß-gal activity in Xenopus eggs, but not in oocytes, aged in vitro over 48 h. Our data suggest that endosomal acidification during egg aging may be responsible for this increase.


Subject(s)
Aging/metabolism , Cellular Senescence , Lysosomes/enzymology , beta-Galactosidase/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Female , Oocytes/cytology , Oocytes/pathology , Xenopus laevis
12.
Methods Mol Biol ; 1920: 41-57, 2019.
Article in English | MEDLINE | ID: mdl-30737685

ABSTRACT

Generation of calcium signal in the cytoplasm of fertilized or parthenogenetically activated eggs has been extensively studied in the intact eggs of several biological species. Calcium transient was found to elicit a plethora of biochemical and cellular events in these cells. Remarkably, intracellular calcium signaling can also be reconstituted in cell-free environment. In this chapter, we describe the methods that allow reconstitution, detection, and quantification of the calcium signal in cell-free extracts of Xenopus oocytes and eggs.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cell Extracts , Oocytes/metabolism , Animals , Cell Separation , Female , Fluorescent Antibody Technique , Intracellular Space/metabolism , Male , Microscopy, Fluorescence , Spermatozoa/metabolism , Xenopus laevis
13.
Methods Mol Biol ; 1920: 59-73, 2019.
Article in English | MEDLINE | ID: mdl-30737686

ABSTRACT

Studies on the egg plasma membrane-associated tyrosine kinase Src have shed light on the identity of the molecular machinery that is responsible for gamete interaction and possibly fusion in African clawed frog Xenopus laevis. Here we describe our protocol for identifying and analyzing molecular and cellular machinery that contributes to a variety of biological processes in the course of oogenesis, oocyte maturation, egg fertilization, and early embryogenesis in Xenopus. Our current special interest is to evaluate the hypothesis that the oocyte/egg membrane microdomain (MD)-associated uroplakin III-Src system is responsible for mediating sperm-egg membrane interaction/fusion signal to the oocyte/egg cytoplasm to initiate embryonic and zygotic development in this species. Therefore, this chapter contains a brief introduction to biology of oocytes and eggs in Xenopus and addresses the following questions: (1) What is oocyte/egg MD? (2) Why do we study oocyte/egg MD? (3) How to manipulate oocyte/egg MD? (4) What has been achieved by oocyte/egg MD studies? (5) What are the next steps in oocyte/egg MD studies?


Subject(s)
Cell Membrane/metabolism , Fertilization , Meiosis , Membrane Microdomains/metabolism , Oogenesis , Animals , Apoptosis , Cell Culture Techniques , Cellular Senescence , Male , Phosphorylation , Sperm-Ovum Interactions , Spermatozoa/metabolism , Uroplakin III/metabolism , Xenopus laevis , src-Family Kinases/metabolism
14.
J Reprod Dev ; 64(1): 1-6, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29081453

ABSTRACT

Spawned unfertilized eggs have been found to die by apoptosis in several species with external fertilization. However, there is no necessity for the externally laid eggs to degrade via this process, as apoptosis evolved as a mechanism to reduce the damaging effects of individual cell death on the whole organism. The recent observation of egg degradation in the genital tracts of some oviparous species provides a clue as to the physiological relevance of egg apoptosis in these animals. We hypothesize that egg apoptosis accompanies ovulation in species with external fertilization as a normal process to eliminate mature eggs retained in the genital tract after ovulation. Furthermore, apoptosis universally develops in ovulated eggs after spontaneous activation in the absence of fertilization. This paper provides an overview of egg apoptosis in several oviparous biological species, including frog, fish, sea urchin, and starfish.


Subject(s)
Apoptosis/physiology , Fertilization/physiology , Ovum/physiology , Animals , Female , Ovum/cytology
15.
Biomed Res Int ; 2017: 5846073, 2017.
Article in English | MEDLINE | ID: mdl-28367443

ABSTRACT

We used molecular dynamics to find the average path of the A-domain H → B conformational transition in protein kinase A Iα. We obtained thirteen productive trajectories and processed them sequentially using factor and cross-correlation analyses. The conformational transition is presented as partly deterministic sequence of six events. Event B represents H → B transition of the phosphate binding cassette. Main participants of this event form electrostatic switch cAMP(O6)-A202(N-H)-G199(C=O). Through this switch, cAMP transmits information about its binding to hydrophobic switch L203-Y229 and thus triggers conformational transition of A-domain. Events C and D consist in N3A-motif displacement towards phosphate binding cassette and B/C-helix rotation. Event E involves an increase in interaction energy between Y229 and ß-subdomain. Taken together, events B, E, and D correspond to the hinge movement towards ß-barrel. Transition of B/C-helix turn (a.a. 229-234) from α-form to π-form accounts for event F. Event G implies that π-helical turn is replaced by kink. Emerging in the resulting conformation, electrostatic interaction R241-E200 facilitates kink formation. The obtained data on the mechanism of cAMP-dependent activation of PKA Iα may contribute to new approaches to designing pharmaceuticals based on cAMP analogs.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP/chemistry , Molecular Dynamics Simulation , Amino Acid Sequence , Binding Sites , Cyclic AMP/therapeutic use , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Protein Conformation/drug effects , Protein Domains , Static Electricity
16.
RNA Biol ; 14(3): 339-346, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28045588

ABSTRACT

Cytoplasmic mRNAs are specifically degraded in somatic cells as a part of early apoptotic response. However, no reports have been presented so far concerning mRNA fate in apoptotic gametes. In the present study, we analyzed the content of various cytoplasmic mRNAs in aging oocytes and eggs of the African clawed frog, Xenopus laevis. To circumvent large gene expression variation among the individual oocytes and eggs, single-cell monitoring of transcript levels has been implemented, using multiple cytoplasmic collections and reverse transcriptase quantitative PCR. It was found that numerous cytoplasmic mRNAs, coding for proteins classified in different functional types, are robustly degraded in apoptotic Xenopus eggs, but not in aging oocytes. mRNA degradation becomes evident in the eggs after meiotic exit at the time of cytochrome c release. A strong correlation between the length of PCR amplicon and specific transcript content was observed, suggesting endonucleolytic cleavage of mRNA. In addition, it was found that mRNA deadenylation also contributes to apoptotic mRNA degradation. Altogether, these findings indicate that the global decay of mRNA represents a hallmark of apoptosis in aging Xenopus eggs. To our knowledge, this is the first description of mRNA degradation in apoptotic gamete cells.


Subject(s)
Apoptosis/genetics , Cellular Senescence/genetics , Oocytes/metabolism , RNA Stability , RNA, Messenger/genetics , Xenopus/genetics , Animals , Biomarkers , Gene Expression Profiling , Gene Expression Regulation , Poly A
17.
Int J Dev Biol ; 60(7-8-9): 289-296, 2016.
Article in English | MEDLINE | ID: mdl-27251073

ABSTRACT

Differentiated somatic cells and nuclei can be reprogrammed to a pluripotent undifferentiated state in the cytoplasm of oocytes and eggs. The ability of the gamete cells to induce reprogramming is not species-specific, so the extracts prepared from the oocytes and eggs of the African clawed frog Xenopus laevis can reprogram somatic mammalian cells. Thus, Xenopus egg extract-mediated reprogramming may constitute an alternative or complement other experimental reprogramming approaches, such as nuclear transfer, cell fusion, and transcription factor transduction. Here, we discuss the major reprogramming events induced by the extracts in somatic nuclei and cells, including remodeling of nuclear structure, replacement of somatic proteins with their embryonic counterparts, epigenetic modification of DNA and histones, transcriptional reprogramming, and initiation of DNA replication. We also address the advantages and limitations of the extract-based reprogramming approach.


Subject(s)
Cell Nucleus/metabolism , Cell-Free System/metabolism , Cellular Reprogramming/physiology , Oocytes/metabolism , Animals , Histones/metabolism , Xenopus laevis/metabolism
18.
Sci Rep ; 5: 14079, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26359642

ABSTRACT

Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.


Subject(s)
Proteins/metabolism , Amino Acid Sequence , Cell-Free System , Hydrophobic and Hydrophilic Interactions , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Ubiquitination
19.
Protein Sci ; 24(9): 1475-85, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26131561

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) play an essential role in the protein synthesis by catalyzing an attachment of their cognate amino acids to tRNAs. Unlike their prokaryotic counterparts, ARSs in higher eukaryotes form a multiaminoacyl-tRNA synthetase complex (MARS), consisting of the subset of ARS polypeptides and three auxiliary proteins. The intriguing feature of MARS complex is the presence of only nine out of twenty ARSs, specific for Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met, and Pro, regardless of the organism, cell, or tissue types. Although existence of MARSs complex in higher eukaryotes has been already known for more than four decades, its functional significance remains elusive. We found that seven of the nine corresponding amino acids (Arg, Gln, Glu, Ile, Leu, Lys, and Met) together with Ala form a predictor of the protein α-helicity. Remarkably, all amino acids (besides Ala) in the predictor have the highest possible number of side-chain rotamers. Therefore, compositional bias of a typical α-helix can contribute to the helix's stability by increasing the entropy of the folded state. It also appears that position-specific α-helical propensity, specifically periodic alternation of charged and hydrophobic residues in the helices, may well be provided by the structural organization of the complex. Considering characteristics of MARS complex from the perspective of the α-helicity, we hypothesize that specific composition and structure of the complex represents a functional mechanism for coordination of translation with the fast and correct folding of amphiphilic α-helices.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Peptide Fragments/chemistry , Protein Folding , Protein Modification, Translational , Protein Structure, Secondary
20.
Int J Mol Sci ; 15(10): 18659-76, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25322156

ABSTRACT

Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.


Subject(s)
Calcium Signaling , Fertilization , Xenopus laevis/physiology , Zygote/physiology , Animals , Calcium/metabolism , Meiosis , Zygote/cytology
SELECTION OF CITATIONS
SEARCH DETAIL