Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 23(1): 119, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664703

ABSTRACT

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Neonicotinoids , Organothiophosphorus Compounds , Pyrethrins , Thiazoles , Animals , Anopheles/drug effects , Insecticides/pharmacology , Guanidines/pharmacology , Mosquito Vectors/drug effects , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Mosquito Control/methods , Organothiophosphorus Compounds/pharmacology , Malaria/prevention & control , Malaria/transmission , Benin , Nitriles/pharmacology , Humans
2.
Trop Med Health ; 52(1): 18, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336760

ABSTRACT

The study objective was to assess the frequency of the kdr-L995F and ace-1 G280S genetic mutations in Anopheles gambiae s.l. mosquitoes and examine their ability to transmit Plasmodium falciparum in areas where indoor residual spraying (IRS) was implemented with Clothianidin 50 WG. The study was conducted in six communes in the Alibori and Donga departments of which four were IRS-treated and two were untreated and served as control. Post-IRS monthly samples of adult mosquitoes were collected in study communes using human landing catches (HLC). An. gambiae s.l. specimens were processed to detect kdr-L995F and ace-1 G280S mutations via PCR as well as Plasmodium falciparum infectivity through CSP ELISA. Our data revealed a high and similar allelic frequency for the kdr-L995F mutation in both treated and control communes (79% vs. 77%, p = 0.14) whilst allelic frequency of the ace-1 G280S mutation was lower across the study area (2-3%, p = 0.58). The sporozoite rate was 2.6% and 2.4% respectively in treated and untreated communes (p = 0.751). No association was found between Plasmodium falciparum infection in Anopheles gambiae s.l. vectors and carriage of kdr-L995F and ace-1 G280S mutations regardless of genotypes. The study findings underline the need for an integrated approach to malaria control, combining different control methods to effectively target transmission. Regular monitoring of insecticide resistance and genetic mutations is essential to guide control strategies.

3.
Malar J ; 18(1): 37, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744666

ABSTRACT

BACKGROUND: Insecticide-based interventions have averted more than 500 million malaria cases since 2000, but insecticide resistance in mosquitoes could bring about a rebound in disease and mortality. This study investigated whether insecticide resistance was associated with increased incidence of clinical malaria. METHODS: In an area of southern Benin with insecticide resistance and high use of insecticide-treated nets (ITNs), malaria morbidity and insecticide resistance were measured simultaneously in 30 clusters (villages or collections of villages) multiple times over the course of 2 years. Insecticide resistance frequencies were measured using the standard World Health Organization bioassay test. Malaria morbidity was measured by cases recorded at health facilities both in the whole population using routinely collected data and in a passively followed cohort of children under 5 years old. RESULTS: There was no evidence that incidence of malaria from routinely collected data was higher in clusters with resistance frequencies above the median, either in children aged under 5 (RR = 1.27 (95% CI 0.81-2.00) p = 0.276) or in individuals aged 5 or over (RR = 1.74 (95% CI 0.91-3.34) p = 0.093). There was also no evidence that incidence was higher in clusters with resistance frequencies above the median in the passively followed cohort (RR = 1.11 (0.52-2.35) p = 0.777). CONCLUSIONS: This study found no association between frequency of resistance and incidence of clinical malaria in an area where ITNs are the principal form of vector control. This may be because, as other studies have shown, ITNs continue to offer some protection from malaria even in the presence of insecticide resistance. Irrespective of resistance, nets provide only partial protection so the development of improved or supplementary vector control tools is required to reduce Africa's unacceptably high malaria burden.


Subject(s)
Culicidae/drug effects , Disease Transmission, Infectious/prevention & control , Insecticide Resistance , Insecticide-Treated Bednets , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/methods , Animals , Benin/epidemiology , Biological Assay , Child, Preschool , Female , Follow-Up Studies , Humans , Incidence , Infant , Infant, Newborn , Male , Rural Population
4.
Malar J ; 16(1): 225, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28549431

ABSTRACT

BACKGROUND: Malaria control is heavily reliant on insecticides, especially pyrethroids. Resistance of mosquitoes to insecticides may threaten the effectiveness of insecticide-based vector control and lead to a resurgence of malaria in Africa. METHODS: In 21 villages in Southern Benin with high levels of insecticide resistance, the resistance status of local vectors was measured at the same time as the prevalence of malaria infection in resident children. RESULTS: Children who used LLINs had lower levels of malaria infection [odds ratio = 0.76 (95% CI 0.59, 0.98, p = 0.033)]. There was no evidence that the effectiveness of nets was different in high and low resistance locations (p = 0.513). There was no association between village level resistance and village level malaria prevalence (p = 0.999). CONCLUSIONS: LLINs continue to offer individual protection against malaria infection in an area of high resistance. Insecticide resistance is not a reason to stop efforts to increase coverage of LLINs in Africa.


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Animals , Anopheles/drug effects , Benin , Female , Mosquito Vectors/drug effects
5.
Parasit Vectors ; 8: 223, 2015 Apr 12.
Article in English | MEDLINE | ID: mdl-25886599

ABSTRACT

BACKGROUND: Insecticides are widely used to control malaria vectors and have significantly contributed to the reduction of malaria-caused mortality. In addition, the same classes of insecticides were widely introduced and used in agriculture in Benin since 1980s. These factors probably contributed to the selection of insecticide resistance in malaria vector populations reported in several localities in Benin. This insecticide resistance represents a threat to vector control tool and should be monitored. The present study reveals observed insecticide resistance trends in Benin to help for a better management of insecticide resistance. METHODS: Mosquito larvae were collected in eight sites and reared in laboratory. Bioassays were conducted on the adult mosquitoes upon the four types of insecticide currently used in public health in Benin. Knock-down resistance, insensitive acetylcholinesterase-1 resistance, and metabolic resistance analysis were performed in the mosquito populations based on molecular and biochemical analysis. The data were mapped using Geographical Information Systems (GIS) with Arcgis software. RESULTS: Mortalities observed with Deltamethrin (pyrethroid class) were less than 90% in 5 locations, between 90-97% in 2 locations, and over 98% in one location. Bendiocarb (carbamate class) showed mortalities ranged 90-97% in 2 locations and were over 98% in the others locations. A complete susceptibility to Pirimiphos methyl and Fenitrothion (organophosphate class) was observed in all locations with 98-100% mortalities. Knock-down resistance frequencies were high (0.78-0.96) and similar between Anopheles coluzzii, Anopheles gambiae, Anopheles arabiensis, and Anopheles melas. Insensitive acetylcholinesterase-1 was rare (0.002-0.1) and only detected in Anopheles gambiae in concomitance with Knock-down resistance mutation. The maps showed a large distribution of Deltamethrin resistance, Knock-down mutation and metabolic resistance throughout the country, a suspected resistance to Bendiocarb and detection of insensitive acetylcholinesterase-1 from northern Benin, and a wide distribution of susceptible vectors to Pirimiphos methyl and Fenitrothion. CONCLUSION: This study showed a widespread resistance of malaria vectors to pyrethroid previously located in southern Benin, an early emergence of carbamates resistance from northern Benin and a full susceptibility to organophosphates. Several resistance mechanisms were detected in vectors with a potential cross resistance to pyrethroids through Knock-down and metabolic resistance mechanisms.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Benin , Biological Assay , Geography , Larva/drug effects , Survival Analysis
6.
Malar J ; 13: 444, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25412948

ABSTRACT

BACKGROUND: To better control malaria, the clear and urgent need is for improved data to inform decision makers, but in several African countries, there is a lack of baseline data on vectors and variation in the intensity of malaria transmission. This has resulted in the implementation of vector control efforts that ignore variation in vector behaviour and intensity of transmission, an approach that is most often not cost-effective. This study presents a detailed entomological description of mosquito distribution and variation in potentially transmissible contacts of Plasmodium falciparum following a south to north transect in Benin. METHOD: The study was conducted in five locations where environmental parameters were different and malaria prevalence ranged between 14 and 51%. The locations represent the main eco-epidemiological malaria areas in Benin. Mosquitoes were collected using human landing catches, pyrethrum spray catches and windows traps. They were taxonomically and molecularly identified. Head-thoraces of Anopheles gambiae s.l. were tested by enzyme-linked immunosorbent assay. Entomological indicators were estimated following WHO guidelines. RESULTS: The results showed variation between location and period in distribution of Anopheles coluzzii, An. gambiae, and Anopheles arabiensis (p < 0.05). An extension of the reported range of An. arabiensis was also observed. Densities of malaria vectors varied significantly between rural and urban sites, however, indoor/outdoor biting ratios remained constant. Proportions of malaria vectors with circumsporozoite protein of P. falciparum were similar between locations. The entomological inoculation rates ranged between zero and eight bites/man/night with significant variations between areas.Four profiles of human exposure to infectious malaria vector bites were observed and included location with one season of high transmission (June - August), two seasons of lower transmission (March-August; October-November), moderate continuous transmission season, and high continuous transmission season of P. falciparum. CONCLUSION: The study revealed several entomological patterns in transmission of P. falciparum in Benin. The data could be used for purposes of planning a more cost-effective vector control strategy, by stratifying the country into higher and lower transmission zones. The information could also be used to guide extension of indoor residual spray based on a targeted use of IRS at sites where the duration of insecticidal effect following spraying coincides with the peak transmission period.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Insect Vectors , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Animals , Anopheles/classification , Anopheles/genetics , Antigens, Protozoan/analysis , Benin/epidemiology , Enzyme-Linked Immunosorbent Assay , Feeding Behavior , Humans , Malaria, Falciparum/epidemiology , Population Density , Prevalence
7.
Malar J ; 13: 76, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24581394

ABSTRACT

BACKGROUND: The widespread use of insecticide-treated nets (LLINs) leads to the development of vector resistance to insecticide. This resistance can reduce the effectiveness of LLIN-based interventions and perhaps reverse progress in reducing malaria morbidity. To prevent such difficulty, it is important to know the real impact of resistance in the effectiveness of mosquito nets. Therefore, an assessment of LLIN efficacy was conducted in malaria prevention among children in high and low resistance areas. METHODS: The study was conducted in four rural districts and included 32 villages categorized as low or high resistance areas in Plateau Department, south-western Benin. Larvae collection was conducted to measure vector susceptibility to deltamethrin and knockdown resistance (kdr) frequency. In each resistance area, around 500 children were selected to measure the prevalence of malaria infection as well as the prevalence of anaemia associated with the use of LLINs. RESULTS: Observed mortalities of Anopheles gambiae s.s population exposed to deltamethrin ranged from 19 to 96%. Knockdown resistance frequency was between 38 and 84%. The prevalence of malaria infection in children under five years was 22.4% (19.9-25.1). This prevalence was 17.3% (14.2-20.9) in areas of high resistance and 27.1% (23.5-31.1) in areas of low resistance (p=0.04). Eight on ten children that were aged six - 30 months against seven on ten of those aged 31-59 months were anaemic. The anaemia observed in the six to 30-month old children was significantly higher than in the 31-59 month old children (p=0.00) but no difference associated with resistance areas was observed (p=0.35). The net use rate was 71%. The risk of having malaria was significantly reduced (p<0.05) with LLIN use in both low and high resistance areas. The preventive effect of LLINs in high resistance areas was 60% (95% CI: 40-70), and was significantly higher than that observed in low resistance areas (p<0.05). CONCLUSION: The results of this study showed that the resistance of malaria vectors seems to date not have affected the impact of LLINs and the use of LLINs was highly associated with reduced malaria prevalence irrespective of resistance.


Subject(s)
Anemia/prevention & control , Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Malaria, Falciparum/prevention & control , Adult , Anemia/epidemiology , Animals , Benin/epidemiology , Biological Assay , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Insecticides/pharmacology , Larva/drug effects , Malaria, Falciparum/complications , Malaria, Falciparum/epidemiology , Male , Nitriles/pharmacology , Pregnancy , Prevalence , Pyrethrins/pharmacology , Rural Population , Survival Analysis
8.
Parasit Vectors ; 6(1): 265, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24499613

ABSTRACT

BACKGROUND: In Benin, around four million Long-Lasting Insecticide-treated Nets were freely distributed to household to prevent malaria in 2011. In contrast to a previous campaign that targeted only children under 5 years and pregnant women, this distribution campaign was conducted in order to achieve universal coverage. This study presents the results of LLIN coverage and utilization after the distribution campaign. METHODS: The study was a cross-sectional household survey which utilized a stratified two-stage cluster sampling design. The strata represented the twelve departments covered by the national distribution campaign in 2011 and included a total of 4,800 households randomly selected in the country. A questionnaire adapted from the standard Malaria Indicator Survey (MIS) Household Questionnaire was used. Data were entered using QPS software and analyzed with R 2.14.1. RESULTS: LLIN ownership was 86.4% (74 - 94). On average, each household received 3 LLINs (2-4). The proportion of households that met the ratio one net for two persons was 77%.The proportions of individuals sleeping under LLINs were high (84.8%). LLIN use among urban residents was 10% lower than in effective users from rural areas (P = 0.00224). CONCLUSIONS: The universal distribution campaign conducted in Benin has increased LLIN ownership and use in the community. But additional efforts are need to improve and maintain LLIN coverage.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/methods , Adolescent , Adult , Aged , Aged, 80 and over , Benin , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Malaria/prevention & control , Male , Middle Aged , Pregnancy , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...