Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 22(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34576012

ABSTRACT

The current study evaluates the role of phenylalanine ammonia-lyase (PAL) and the associated metabolic complex in the accumulation of lignin in common wheat plants (Tríticum aestívum L.) at the early stages of ontogenesis. The data analysis was performed using plant samples that had reached Phases 4 and 5 on the Feekes scale-these phases are characterized by a transition to the formation of axial (stem) structures in cereal plants. We have shown that the substrate stimulation of PAL with key substrates, such as L-phenylalanine and L-tyrosine, leads to a significant increase in lignin by an average of 20% in experimental plants compared to control plants. In addition, the presence of these compounds in the nutrient medium led to an increase in the number of gene transcripts associated with lignin synthesis (PAL6, C4H1, 4CL1, C3H1). Inhibition was the main tool of the study. Potential competitive inhibitors of PAL were used: the optical isomer of L-phenylalanine-D-phenylalanine-and the hydroxylamine equivalent of phenylalanine-O-Benzylhydroxylamine. As a result, plants incubated on a medium supplemented with O-Benzylhydroxylamine were characterized by reduced PAL activity (almost one third). The lignin content of the cell wall in plants treated with O-Benzylhydroxylamine was almost halved. In contrast, D-phenylalanine did not lead to significant changes in the lignin-associated metabolic complex, and its effect was similar to that of specific substrates.


Subject(s)
Lignin/biosynthesis , Phenylalanine Ammonia-Lyase/metabolism , Triticum/enzymology , Ammonia-Lyases/metabolism , Biomass , Phenylalanine Ammonia-Lyase/antagonists & inhibitors , Triticum/growth & development
2.
Plants (Basel) ; 9(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283640

ABSTRACT

Reacting to environmental exposure, most higher plants activate secondary metabolic pathways, such as the metabolism of phenylpropanoids. This pathway results in the formation of lignin, one of the most important polymers of the plant cell, as well as a wide range of phenolic secondary metabolites. Aromatic amino acids, such as phenylalanine and tyrosine, largely stimulate this process, determining two ways of lignification in plant tissues, varying in their efficiency. The current study analyzed the effect of phenylalanine and tyrosine, involved in plant metabolism through the phenylalanine ammonia-lyase (PAL) pathway, on the synthesis and accumulation of phenolic compounds, as well as lignin by means of the expression of a number of genes responsible for its biosynthesis, based on the example of common wheat (Triticum aestivum L.).

3.
Plants (Basel) ; 8(11)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671752

ABSTRACT

The effect of selenium biofortification on phytomass yield, selenium, essential oil and phenolic compounds content as well as antioxidant properties of basil leaves was investigated. Selenium in form of sodium selenate was applied either in nutrient solution or by foliar spraying at three levels (2.0, 5.0 and 10.0 µM). Selenium treatment significantly increased Se concentration in leaves up to 20.23 µg g-1 (addition in nutrient solution) and 10.74 µg g-1 (foliar application). Neither a toxic nor a beneficial effect of Se addition on the plants was observed. Se application of 2 µM Se in nutrient solution and of 5 µM Se by foliar spraying successfully enhanced production of essential oils, hydroxycinnamic acids, total phenolics and antioxidant activity of basil leaves. The anthocyanin content was positively affected only by application of Se in nutrient solution. Considering both an increase in the Se concentration in basil leaves and an increase in the production of phytonutrients, the optimal doses of selenium can be considered to be 5 and 10 µM for Se addition in nutrient solution and by foliar treatment, respectively. The results confirm the possibility of the enrichment of basil plants with selenium and thereby improving the nutritional qualities of the human diet.

SELECTION OF CITATIONS
SEARCH DETAIL
...