Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 146: 111-124, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31841688

ABSTRACT

Biosimilars are poised to reduce prices and increase patient access to expensive, but highly effective biologic products. However, questions still remain about the degree of similarity and scarcity of information on biosimilar products from outside of the US/EU in the public domain. Thus, as an independent entity, we performed a comparative analysis between the innovator, Rituxan® (manufactured by Genentech/Roche), and a Russian rituximab biosimilar, Acellbia® (manufactured by Biocad). We evaluated biosimilarity of these two products by a variety of state-of-the-art analytical mass spectrometry techniques, including tandem MS mapping, HX-MS, IM-MS, and intact MS. Both were found to be generally similar regarding primary and higher order structure, though differences were identified in terms of glycoform distribution levels of C-terminal Lys, N-terminal pyroGlu, charge variants and soluble aggregates. Notably, we confirmed that the biosimilar had a higher level of afucosylated glycans, resulting in a stronger FcγIIIa binding affinity and increased ADCC activity. Taken together, our work provides a comprehensive comparison of Rituxan® and Acellbia®.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Biosimilar Pharmaceuticals/pharmacology , Receptors, IgG/metabolism , Rituximab/pharmacology , Antineoplastic Agents, Immunological/chemistry , Biosimilar Pharmaceuticals/chemistry , Cell Line, Tumor , GPI-Linked Proteins/metabolism , Glycosylation , Humans , Polysaccharides/chemistry , Rituximab/chemistry
2.
Mol Pharm ; 16(1): 258-272, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30540909

ABSTRACT

Immunoglobulin gamma (IgG) monoclonal antibodies (mAbs) are glycoproteins that have emerged as powerful and promising protein therapeutics. During the process of production, storage and transportation, exposure to ambient light is inevitable, which can cause protein physical and chemical degradation. For mechanistic studies of photodegradation, we have exposed IgG4-Fc to UV light. The photoirradiation of IgG4-Fc with monochromatic UVC light at λ = 254 nm and UVB light with λmax = 305 nm in air-saturated solutions revealed multiple photoproducts originating from tyrosine side chain fragmentation at Tyr300, Tyr373, and Tyr436. Tyr side chain fragmentation yielded either Gly or various backbone cleavage products, including glyoxal amide derivatives. A mechanism is proposed involving intermediate Tyr radical cation formation, either through direct light absorption of Tyr or through electron transfer to an initial Trp radical cation, followed by elimination of quinone methide. Product formation showed either no (cleavage of Tyr373) or significant (cleavage of Tyr436) inverse product solvent isotope effects (SIEs), indicating a role for proton transfer in the cleavage mechanism of Tyr436. The role of electron transfer in the cleavage of Tyr436 was further investigated through mutation of an adjacent Trp381. This is the first observation of a photoinduced Tyr side chain cleavage reactions in a protein.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Tyrosine/chemistry , Mass Spectrometry , Molecular Structure
3.
J Pharm Sci ; 107(9): 2315-2324, 2018 09.
Article in English | MEDLINE | ID: mdl-29751008

ABSTRACT

We have used hydrogen exchange-mass spectrometry to characterize local backbone flexibility of 4 well-defined IgG1-Fc glycoforms expressed and purified from Pichia pastoris, 2 of which were prepared using subsequent in vitro enzymatic treatments. Progressively decreasing the size of the N-linked N297 oligosaccharide from high mannose (Man8-Man12), to Man5, to GlcNAc, to nonglycosylated N297Q resulted in progressive increases in backbone flexibility. Comparison of these results with recently published physicochemical stability and Fcγ receptor binding data with the same set of glycoproteins provide improved insights into correlations between glycan structure and these pharmaceutical properties. Flexibility significantly increased upon glycan truncation in 2 potential aggregation-prone regions. In addition, a correlation was established between increased local backbone flexibility and increased deamidation at asparagine 315. Interestingly, the opposite trend was observed for oxidation of tryptophan 277 where faster oxidation correlated with decreased local backbone flexibility. Finally, a trend of increasing C'E glycopeptide loop flexibility with decreasing glycan size was observed that correlates with their FcγRIIIa receptor binding properties. These well-defined IgG1-Fc glycoforms serve as a useful model system to identify physicochemical stability and local backbone flexibility data sets potentially discriminating between various IgG glycoforms for potential applicability to future comparability or biosimilarity assessments.


Subject(s)
Chemistry, Pharmaceutical/methods , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Tandem Mass Spectrometry/methods , Glycosylation , Humans , Immunoglobulin Fc Fragments/analysis , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/analysis , Immunoglobulin G/metabolism , Mass Spectrometry/methods , Pichia , Pliability , Protein Structure, Secondary , Protons
4.
Mol Immunol ; 92: 28-37, 2017 12.
Article in English | MEDLINE | ID: mdl-29031045

ABSTRACT

Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined the crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8Šresolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain some of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.


Subject(s)
Glycoproteins/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Mannose/chemistry , Crystallography, X-Ray , Glycoproteins/genetics , Glycosylation , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Mannose/genetics
5.
MAbs ; 9(7): 1197-1209, 2017 10.
Article in English | MEDLINE | ID: mdl-28787231

ABSTRACT

Remsima™ (infliximab) is the first biosimilar monoclonal antibody (mAb) approved by the European Medical Agency and the US Food and Drug Administration. Remsima™ is highly similar to its reference product, Remicade®, with identical formulation components. The 2 products, however, are not identical; Remsima™ has higher levels of soluble aggregates, C-terminal lysine truncation, and fucosylated glycans. To understand if these attribute differences could be amplified during forced degradation, solutions and lyophilized powders of the 2 products were subjected to stress at elevated temperature (40-60°C) and humidity (dry-97% relative humidity). Stress-induced aggregation and degradation profiles were similar for the 2 products and resulted in loss of infliximab binding to tumor necrosis factor and FcγRIIIa. Appearances of protein aggregates and hydrolysis products were time- and humidity-dependent, with similar degradation rates observed for the reference and biosimilar products. Protein powder incubations at 40°C/97% relative humidity resulted in partial mAb unfolding and increased asparagine deamidation. Minor differences in heat capacity, fluorescence, levels of subvisible particulates, deamidation and protein fragments were observed in the 2 stressed products, but these differences were not statistically significant. The protein solution instability at 60°C, although quite significant, was also similar for both products. Despite the small initial analytical differences, Remicade® and Remsima™ displayed similar degradation mechanisms and kinetics. Thus, our results show that the 2 products are highly similar and infliximab's primary sequence largely defines their protein instabilities compared with the limited influence of small initial purity and glycosylation differences in the 2 products.


Subject(s)
Antibodies, Monoclonal/chemistry , Biosimilar Pharmaceuticals/chemistry , Infliximab/chemistry , Drug Stability , Humans , Humidity , Protein Stability , Temperature
6.
Bioconjug Chem ; 28(7): 1867-1877, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28581731

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/prevention & control , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Peptides/chemistry , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Solid-Phase Synthesis Techniques , Treatment Outcome
7.
Anal Chem ; 89(9): 4838-4846, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28365979

ABSTRACT

In April 2016, the Food and Drug Administration approved the first biosimilar monoclonal antibody (mAb), Inflectra/Remsima (Celltrion), based off the original product Remicade (infliximab, Janssen). Biosimilars promise significant cost savings for patients, but the unavoidable differences between innovator and copycat biologics raise questions regarding product interchangeability. In this study, Remicade and Remsima were examined by native mass spectrometry, ion mobility, and quantitative peptide mapping. The levels of oxidation, deamidation, and mutation of individual amino acids were remarkably similar. We found different levels of C-terminal truncation, soluble protein aggregates, and glycation that all likely have a limited clinical impact. Importantly, we identified more than 25 glycoforms for each product and observed glycoform population differences, with afucosylated glycans accounting for 19.7% of Remicade and 13.2% of Remsima glycoforms, which translated into a 2-fold reduction in the level of FcγIIIa receptor binding for Remsima. While this difference was acknowledged in Remsima regulatory filings, our glycoform analysis and receptor binding results appear to be somewhat different from the published values, likely because of methodological differences between laboratories and improved glycoform identification by our laboratory using a peptide map-based method. Our mass spectrometry-based analysis provides rapid and robust analytical information vital for biosimilar development. We have demonstrated the utility of our multiple-attribute monitoring workflow using the model mAbs Remicade and Remsima and have provided a template for analysis of future mAb biosimilars.


Subject(s)
Antibodies, Monoclonal/chemistry , Biosimilar Pharmaceuticals/chemistry , Infliximab/chemistry , Chromatography, Gel , Glycosylation , Interferometry , Mass Spectrometry/methods , Peptide Mapping
8.
J Pharm Sci ; 105(2): 559-574, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26869419

ABSTRACT

Four different well-defined IgG1 Fc glycoforms are proposed as a model system to examine important biological and physicochemical features for protein drug biosimilar analyses. The IgG1 Fc glycoforms were produced by yeast expression combined with in vitro enzymatic synthesis as a series of sequentially truncated high-mannose IgG1 Fc glycoforms with an anticipated range of biological activity and structural stability. Initial characterization with mass spectrometry, SDS-PAGE, size exclusion HPLC, and capillary isoelectric focusing confirmed that the glycoproteins are overall highly similar with the only major difference being glycosylation state. Binding to the activating Fc receptor, FcγRIIIa was used to evaluate the potential biological activity of the IgG1 Fc glycoproteins. Two complementary methods using biolayer interferometry, 1 with protein G-immobilized IgG1 Fc and the other with streptavidin-immobilized FcγRIIIa, were developed to assess FcγRIIIa affinity in kinetic binding studies. The high-mannose IgG1 Fc and Man5-IgG1 Fc glycoforms were highly similar to one another with high affinity for FcγRIIIa, whereas GlcNAc-Fc had weak affinity, and the nonglycosylated N297Q-Fc had no measurable affinity for FcγRIIIa. These 4 IgG1 Fc glycoforms were also evaluated in terms of physical and chemical stability profiles and then used as a model system to mathematically assess overall biosimilarity, as described in a series of companion articles.


Subject(s)
Biosimilar Pharmaceuticals/chemical synthesis , Chemistry, Pharmaceutical/methods , Glycoproteins/chemical synthesis , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Biosimilar Pharmaceuticals/metabolism , Drug Evaluation, Preclinical/methods , Glycoproteins/analysis , Glycoproteins/metabolism , Glycosylation , Immunoglobulin Fc Fragments/analysis , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/analysis , Immunoglobulin G/metabolism , Protein Binding/physiology
9.
J Pharm Sci ; 105(2): 588-601, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26869421

ABSTRACT

As part of a series of articles in this special issue describing 4 well-defined IgG1-Fc glycoforms as a model system for biosimilarity analysis (high mannose-Fc, Man5-Fc, GlcNAc-Fc and N297Q-Fc aglycosylated), the focus of this work is comparisons of their physical properties. A trend of decreasing apparent solubility (thermodynamic activity) by polyethylene glycol precipitation (pH 4.5, 6.0) and lower conformational stability by differential scanning calorimetry (pH 4.5) was observed with reducing size of the N297-linked oligosaccharide structures. Using multiple high-throughput biophysical techniques, the physical stability of the Fc glycoproteins was then measured in 2 formulations (NaCl and sucrose) across a wide range of temperatures (10°C-90°C) and pH (4.0-7.5) conditions. The data sets were used to construct 3-index empirical phase diagrams and radar charts to visualize the regions of protein structural stability. Each glycoform showed improved stability in the sucrose (vs. salt) formulation. The HM-Fc and Man5-Fc displayed the highest relative stability, followed by GlcNAc-Fc, with N297Q-Fc being the least stable. Thus, the overall physical stability profiles of the 4 IgG1-Fc glycoforms also show a correlation with oligosaccharide structure. These data sets are used to develop a mathematical model for biosimilarity analysis (as described in a companion article by Kim et al. in this issue).


Subject(s)
Glycoproteins/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Oligosaccharides/chemistry , Drug Stability , Glycosylation , Polyethylene Glycols/chemistry , Protein Conformation
10.
J Pharm Sci ; 105(2): 602-612, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26869422

ABSTRACT

Biosimilarity assessments are performed to decide whether 2 preparations of complex biomolecules can be considered "highly similar." In this work, a machine learning approach is demonstrated as a mathematical tool for such assessments using a variety of analytical data sets. As proof-of-principle, physical stability data sets from 8 samples, 4 well-defined immunoglobulin G1-Fragment crystallizable glycoforms in 2 different formulations, were examined (see More et al., companion article in this issue). The data sets included triplicate measurements from 3 analytical methods across different pH and temperature conditions (2066 data features). Established machine learning techniques were used to determine whether the data sets contain sufficient discriminative power in this application. The support vector machine classifier identified the 8 distinct samples with high accuracy. For these data sets, there exists a minimum threshold in terms of information quality and volume to grant enough discriminative power. Generally, data from multiple analytical techniques, multiple pH conditions, and at least 200 representative features were required to achieve the highest discriminative accuracy. In addition to classification accuracy tests, various methods such as sample space visualization, similarity analysis based on Euclidean distance, and feature ranking by mutual information scores are demonstrated to display their effectiveness as modeling tools for biosimilarity assessments.


Subject(s)
Biosimilar Pharmaceuticals/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Machine Learning , Biosimilar Pharmaceuticals/analysis , Immunoglobulin Fc Fragments/analysis , Immunoglobulin G/analysis , Machine Learning/trends , Protein Stability
11.
Anal Methods ; 8(31): 6046-6055, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-28989532

ABSTRACT

The use of monoclonal antibodies (mAbs) for the manufacture of innovator and biosimilar biotherapeutics has increased tremendously in recent years. From a structural perspective, mAbs have high disulfide bond content, and the correct disulfide connectivity is required for proper folding and to maintain their biological activity. Therefore, disulfide linkage mapping is an important component of mAB characterization for ensuring drug safety and efficacy. The native disulfide linkage patterns of all four subclasses of IgG antibodies have been well established since the late 1960s. Among these IgG subtypes, disulfide mediated isoforms have been identified for IgG2 and IgG4, and to a lesser extent in IgG1, which is the most studied IgG subclass. However, no studies have been carried out so far to investigate whether different IgG3 isoforms exist due to alternative disulfide connectivity. In an effort to investigate the presence of disulfide-mediated isoforms in IgG3, we employed a bottom-up mass spectrometry approach to accurately determine the disulfide bond linkages in endogenous human IgG3 monoclonal antibody and our results show that no such alternative disulfide bonds exist. While many antibody-based drugs are developed around IgG1, IgG3 represents a new, and in some cases, more desirable drug candidate. Our data represent the first demonstration that alternative disulfide bond arrangements are not present in endogenous IgG3; and therefore, they should not be present in recombinant forms used as antibody-based therapeutics.

13.
Nature ; 517(7533): 165-169, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25567280

ABSTRACT

Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.


Subject(s)
Bacteroidetes/metabolism , Gastrointestinal Tract/microbiology , Mannans/metabolism , Models, Biological , Yeasts/chemistry , Animals , Bacteroidetes/cytology , Bacteroidetes/enzymology , Bacteroidetes/genetics , Biological Evolution , Carbohydrate Conformation , Diet , Enzymes/genetics , Enzymes/metabolism , Female , Genetic Loci/genetics , Germ-Free Life , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Male , Mannans/chemistry , Mannose/metabolism , Mice , Models, Molecular , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Periplasm/enzymology
14.
J Pharm Sci ; 103(6): 1613-1627, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24740840

ABSTRACT

The structural integrity and conformational stability of various IgG1-Fc proteins produced from the yeast Pichia pastoris with different glycosylation site occupancy (di-, mono-, and nonglycosylated) were determined. In addition, the physical stability profiles of three different forms of nonglycosylated Fc molecules (varying amino-acid residues at site 297 in the CH 2 domain due to the point mutations and enzymatic digestion of the Fc glycoforms) were also examined. The physical stability of these IgG1-Fc glycoproteins was examined as a function of pH and temperature by high-throughput biophysical analysis using multiple techniques combined with data visualization tools (three index empirical phase diagrams and radar charts). Across the pH range of 4.0-6.0, the di- and monoglycosylated forms of the IgG1-Fc showed the highest and lowest levels of physical stability, respectively, with the nonglycosylated forms showing intermediate stability depending on solution pH. In the aglycosylated Fc proteins, the introduction of Asp (D) residues at site 297 (QQ vs. DN vs. DD forms) resulted in more subtle changes in structural integrity and physical stability depending on solution pH. The utility of evaluating the conformational stability profile differences between the various IgG1-Fc glycoproteins is discussed in the context of analytical comparability studies.


Subject(s)
Asparagine/chemistry , Glycine/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Blotting, Western , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Glycosylation , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
15.
Carbohydr Res ; 383: 69-75, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24326091

ABSTRACT

Here we present a synthetic route for solid phase synthesis of N-linked glycoconjugates containing high mannose oligosaccharides which allows the incorporation of useful functional handles on the N-terminus of asparagine. In this strategy, the C-terminus of an Fmoc protected aspartic acid residue is first attached to a solid phase support. The side chain of aspartic acid is protected by a 2-phenylisopropyl protecting group, which allows selective deprotection for the introduction of glycosylation. By using a convergent on-resin glycosylamine coupling strategy, an N-glycosidic linkage is successfully formed on the free side chain of the resin bound aspartic acid with a large high mannose oligosaccharide, Man8GlcNAc2, to yield N-linked high mannose glycosylated asparagine. The use of on-resin glycosylamine coupling provides excellent glycosylation yield, can be applied to couple other types of oligosaccharides, and also makes it possible to recover excess oligosaccharides conveniently after the on-resin coupling reaction. Useful functional handles including an alkene (p-vinylbenzoic acid), an alkyne (4-pentynoic acid), biotin, and 5-carboxyfluorescein are then conjugated onto the N-terminal amine of asparagine on-resin after the removal of the Fmoc protecting group. In this way, useful functional handles are introduced onto the glycosylated asparagine while maintaining the structural integrity of the reducing end of the oligosaccharide. The asparagine side chain also serves as a linker between the glycan and the functional group and preserves the native presentation of N-linked glycan which may aid in biochemical and structural studies. As an example of a biochemical study using functionalized high mannose glycosylated asparagine, a fluorescence polarization assay has been utilized to study the binding of the lectin Concanavalin A (ConA) using 5-carboxyfluorescein labeled high mannose glycosylated asparagine.


Subject(s)
Asparagine/chemical synthesis , Mannose/chemical synthesis , Oligosaccharides/chemical synthesis , Asparagine/chemistry , Aspartic Acid/chemistry , Concanavalin A/chemistry , Fluorescence , Glycosylation , Mannose/chemistry , Oligosaccharides/chemistry , Resins, Synthetic/chemistry , Solid-Phase Synthesis Techniques
16.
J Pharm Sci ; 102(11): 3942-56, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24114789

ABSTRACT

The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after partial or complete enzymatic removal of the N-linked Fc glycan, were compared with the untreated mAb over a wide range of temperature (10°C-90°C) and solution pH (3-8) using circular dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization employing empirical phase diagrams. Subtle-to-larger stability differences between the different glycoforms were observed. Improved detection of physical stability differences was then demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially when combined with an alternative data visualization method (radar plots). Differential scanning calorimetry and differential scanning fluorimetry were then utilized and also showed an improved ability to detect differences in the physical stability of a mAb glycoform. On the basis of these results, a two-step methodology was used in which conformational stability of a mAb glycoform is first screened with a wide variety of instruments and environmental stresses, followed by a second evaluation with optimally sensitive experimental conditions, analytical techniques, and data visualization methods. With this approach, a high-throughput biophysical analysis to assess relatively subtle conformational stability differences in protein glycoforms is demonstrated.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Calorimetry, Differential Scanning , Circular Dichroism , Glycosylation , Hydrogen-Ion Concentration , Protein Conformation , Protein Stability , Temperature
17.
Bioorg Med Chem Lett ; 23(22): 6046-51, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24094817

ABSTRACT

The HIV-1 envelope gp120/gp41 glycoprotein complex plays a critical role in virus-host cell membrane fusion and has been a focus for the development of HIV fusion inhibitors. In this Letter, we present the synthesis of dimers of HIV fusion inhibitor peptides C37H6 and CP32M, which target the trimeric gp41 in the pre-hairpin intermediate state to inhibit membrane fusion. Reactive peptide modules were synthesized using native chemical ligation and then assembled into dimers with varying linker lengths using Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) 'click' chemistry. Cell-cell fusion inhibition assays demonstrated that dimers with a (PEG)7 linker showed enhanced antiviral potency over the corresponding monomers. Moreover, the bio-orthogonal nature of the CuAAC 'click' reaction provides a practical way to assemble heterodimers of HIV fusion inhibitors. Heterodimers consisting of the T20-sensitive strain inhibitor C37H6 and the T20-resistant strain inhibitor CP32M were produced that may have broader spectrum activities against both T20-sensitive and T20-resistant strains.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV Fusion Inhibitors/chemical synthesis , HIV Fusion Inhibitors/pharmacology , Peptides/chemical synthesis , Amino Acid Sequence , Click Chemistry , HIV Fusion Inhibitors/chemistry , HIV-1/drug effects , HIV-1/physiology , Humans , Membrane Fusion/drug effects , Molecular Sequence Data , Peptides/pharmacology , Protein Multimerization , Protein Structure, Secondary
18.
Bioconjug Chem ; 24(6): 1008-16, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23777335

ABSTRACT

Immunoconjugates, including antibody-drug conjugates and Fc-conjugates, represent a rapidly growing class of therapeutics undergoing clinical development. Despite their growing popularity, the high intrinsic heterogeneity of immunoconjugates often complicates the development process and limits their widespread application. In particular, immunoconjugate charge variants exhibit markedly different colloidal stabilities, solubilities, pharmacokinetics, and tissue distributions. Charge variants arise spontaneously due to degradation and, depending on the type of drug, linker, and conjugation site, through drug conjugation. Electrostatic changes in naked antibodies often result in poor performance characteristics, and therefore, charge alterations due to degradation are critical to control. Charge properties are expected to be equally important to producing well-behaved ADCs. Charge-based methods of analysis, such as isoelectric focusing and ion exchange chromatography, are capable of probing the underlying complexities within immunoconjugate drug products. Despite the utility of these methods, there are only a few published reports of charge-based assays applied to immunoconjugates. In the present study, we sought to identify the effects of chemical conjugation on the electrostatic properties of Fc-conjugates. In order to minimize the effects of post-translational modifications (e.g., deamidation), a single Fc charge variant was isolated prior to conjugation of a fluorescent probe, Alexa Fluor 350, to the side chains of lysine residues. The resulting Fc-conjugates were assessed by a variety of analytical techniques, including isoelectric focusing and ion exchange chromatography, to determine their charge properties.


Subject(s)
Acetates/chemistry , Chromones/chemistry , Fluorescent Dyes/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/isolation & purification , Static Electricity
19.
Methods Mol Biol ; 751: 329-42, 2011.
Article in English | MEDLINE | ID: mdl-21674341

ABSTRACT

Site-specific modification of glycoproteins has wide application in both biochemical and biophysical studies. This method describes the conjugation of synthetic molecules to the N-terminus of a glycoprotein fragment, viz., human immunoglobulin G subclass 1 fragment crystallizable (IgG1 Fc), by native chemical ligation. The glycosylated IgG1 Fc is expressed in a glycosylation-deficient yeast strain. The N-terminal cysteine is generated by the endogenous yeast protease Kex2 in the yeast secretory pathway. The N-terminal cysteine is then conjugated with a biotin thioester to produce a biotinylated, glycosylated IgG1 Fc using native chemical ligation.


Subject(s)
Glycoproteins/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/chemistry , Saccharomyces cerevisiae/genetics , Acetates/chemical synthesis , Acetates/chemistry , Binding Sites , Biotinylation , Gene Expression , Glycosylation , Humans , Immunoglobulin Fc Fragments/isolation & purification , Immunoglobulin Fc Fragments/metabolism , Plasmids/genetics , Proprotein Convertases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity
20.
Methods Mol Biol ; 751: 343-55, 2011.
Article in English | MEDLINE | ID: mdl-21674342

ABSTRACT

This chapter describes a rapid and efficient approach for the solid-phase synthesis of N-linked glycopeptides that utilizes on-resin glycosylamine coupling to produce N-linked glycosylation sites. In this method, the full-length nonglycosylated peptide is first synthesized on a solid-phase support using standard Fmoc chemistry. The glycosylation site is then introduced through an orthogonally protected 2-phenylisopropyl (PhiPr) aspartic acid (Asp) residue. After selective deprotection of the Asp residue, a high mannose type oligosaccharide glycosylamine is coupled on-resin to the free Asp side chain to form a N-glycosidic bond. Subsequent protecting group removal and peptide cleavage from the resin ultimately yields the desired glycopeptide. This strategy provides an effective route for conducting glycosylation reactions on a solid-phase support, simplifies the process of glycopeptide purification relative to solution-phase glycopeptide synthesis strategies, and enables the recovery of potentially valuable, un-reacted oligosaccharides. This approach has been applied to the solid-phase synthesis of the N-linked high mannose glycosylated form of peptide T (ASTTTNYT), a fragment of the HIV-1 envelope glycoprotein gp120.


Subject(s)
Glycopeptides/chemistry , Glycopeptides/chemical synthesis , HIV Envelope Protein gp120/chemistry , Mannose/chemistry , Oligosaccharides/chemistry , Resins, Synthetic/chemistry , Amino Acid Sequence , Aspartic Acid/chemistry , Binding Sites , Glucosamine/chemistry , Glycopeptides/isolation & purification , Glycosylation
SELECTION OF CITATIONS
SEARCH DETAIL
...