Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241465

ABSTRACT

Commercially pure titanium grade II was kinetically nitrided by implanting nitrogen ions with a fluence in the range of (1-9)·1017 cm-2 and ion energy of 90 keV. Post-implantation annealing in the temperature stability range of TiN (up to 600 °C) shows hardness degradation for titanium implanted with high fluences above 6·1017 cm-2, leading to nitrogen oversaturation. Temperature-induced redistribution of interstitially located nitrogen in the oversaturated lattice has been found to be the predominant hardness degradation mechanism. The impact of the annealing temperature on a change in surface hardness related to the applied fluence of implanted nitrogen has been demonstrated.

2.
Mater Sci Eng C Mater Biol Appl ; 80: 652-658, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28866212

ABSTRACT

Surface bioactivity has been under intensive study with reference to its use in medical implants. Our study is focused on coatings prepared from an electroactive material which can support bone cell adhesion. Until now, hydroxyapatite films have usually been utilized as a chemically-active surface agent. However, electrically-active films could set a new direction in hard tissue replacement. As a base for these films, it is necessary to prepare an intermediate film, which can serve as a suitable barrier against the possible diffusion of some allergens and toxic elements from the substrate. The intermediate film also improves the adaptation of the mechanical properties of the basic material to an electroactive film. The aim of our work was to select an implantable and biocompatible material for this intermediate film that is suitable for coating several widely-used materials, to check the possibility of preparing an electroactive film for use on a material of this type, and to characterize the structure and several mechanical properties of this intermediate film. TiNb was selected as the material for the intermediate film, because of its excellent chemical and mechanical properties. TiNb coatings were deposited by magnetron sputtering on various substrates, namely Ti, Ti6Al4V, stainless steel, and bulk TiNb (as standard), and important properties of the layers, e.g. surface morphology and surface roughness, crystalline structure, etc., were characterized by several methods (SEM, EBSD, X-ray diffraction, nanoindentation and roughness measurement). It was found that the structure and the mechanical properties of the TiNb layer depended significantly on the type of substrate. TiNb was then used as a substrate for depositing a ferroelectrically active material, e.g., BaTiO3, and the adhesion, viability and proliferation of human osteoblast-like Saos-2 cells on this system were studied. We found that the electroactive BaTiO3 film was not only non-cytotoxic (i.e. it did not affect the cell viability). It also enhanced the growth of Saos-2 cells in comparison with pure TiNb and with standard tissue culture polystyrene wells, and also in comparison with BaTiO3 films deposited on Ti, i.e. a material clinically used for implantation into the bone.


Subject(s)
Alloys/chemistry , Adhesives , Durapatite , Humans , Materials Testing , Osteoblasts , Prostheses and Implants , Surface Properties , Titanium , X-Ray Diffraction
3.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 334-339, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770900

ABSTRACT

BaTiO3 (BTO) layers were deposited by pulsed laser deposition (PLD) on TiNb, Pt/TiNb, Si (100), and fused silica substrates using various deposition conditions. Polycrystalline BTO with sizes of crystallites in the range from 90nm to 160nm was obtained at elevated substrate temperatures of (600°C-700°C). With increasing deposition temperature above 700°C the formation of unwanted rutile phase prevented the growth of perovskite ferroelectric BTO. Concurrently, with decreasing substrate temperature below 500°C, amorphous films were formed. Post-deposition annealing of the amorphous deposits allowed obtaining perovskite BTO. Using a very thin Pt interlayer between the BTO films and TiNb substrate enabled high-temperature growth of preferentially oriented BTO. Raman spectroscopy and electrical characterization indicated polar ferroelectric behaviour of the BTO films.


Subject(s)
Alloys/chemistry , Barium Compounds/chemistry , Biocompatible Materials/chemistry , Lasers , Niobium/chemistry , Prostheses and Implants , Titanium/chemistry , Electricity , Electrodes , Microscopy, Electron, Scanning , Silicon Dioxide/chemistry , Spectrum Analysis, Raman , X-Ray Diffraction
4.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1636-45, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827618

ABSTRACT

ß-Stabilized titanium (Ti) alloys containing non-toxic elements, particularly niobium (Nb), are promising materials for the construction of bone implants. Their biocompatibility can be further increased by oxidation of their surface. Therefore, in this study, the adhesion, growth and viability of human osteoblast-like MG 63 cells in cultures on oxidized surfaces of a ß-TiNb alloy were investigated and compared with the cell behavior on thermally oxidized Ti, i.e. a metal commonly used for constructing bone implants. Four experimental groups of samples were prepared: Ti or TiNb samples annealed to 600 °C for 60 min in a stream of dry air, and Ti and TiNb samples treated in Piranha solution prior to annealing. We found that on all TiNb-based samples, the cell population densities on days 1, 3 and 7 after seeding were higher than on the corresponding Ti-based samples. As revealed by XPS and Raman spectroscopy, and also by isoelectric point measurements, these results can be attributed to the presence of T-Nb2O5 oxide phase in the surface of the alloy sample, which decreased its negative zeta (ζ)-potential in comparison with zeta (ζ)-potential of the Ti sample at physiological pH. This effect was tentatively explained by the presence of positively charged defects acting as Lewis sites of the surface Nb2O5 phase. Piranha treatment slightly decreases the biocompatibility of the samples, which for the alloy samples may be explained by a decrease in the number of defective sites with this treatment. Thus, the presence of Nb and thermal oxidation of ß-stabilized Ti alloys play a significant role in the increased biocompatibility of TiNb alloys.


Subject(s)
Alloys/pharmacology , Niobium/pharmacology , Osteoblasts/cytology , Cell Adhesion/drug effects , Cell Count , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Humans , Microscopy, Electron, Scanning , Osteoblasts/drug effects , Osteoblasts/metabolism , Oxidation-Reduction/drug effects , Photoelectron Spectroscopy , Spectrum Analysis, Raman , Static Electricity , Surface Properties/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...