Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Clin Med ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38541826

ABSTRACT

Background: Rejection continues to be the main cause of renal graft loss. Currently, the gold standard for diagnosis is an allograft biopsy; however, because it is time-consuming, costly, and invasive, the pursuit of novel biomarkers has gained interest. Variation in the expressions of miRNAs is currently considered a probable biomarker for the diagnosis of acute rejection. This study aimed to determine whether miR-150-5p in serum is related to microvascular damage in patients with acute antibody-mediated rejection (ABMR). Methods: A total of 27 patients who underwent renal transplantation (RT) with and without ABMR were included in the study. We performed the quantification of hsa-miR-150-5p, hsa-miR-155, hsa-miR-21, hsa-miR-126, and hsa-miR-1 in plasma by RT-qPCR. The expressions between the groups and their correlations with the histological characteristics of the patients with ABMR were also investigated. Results: miR-150-5p significantly increased in the plasma of patients with rejection (p < 0.05), and the changes in miR-150-5p were directly correlated with microvascular inflammation in the allograft biopsies. Clinical utility was determined by ROC analysis with an area under the curve of 0.873. Conclusions: Our results show that the patients with RT with ABMR exhibited increased expression of miR-150-5p compared to patients without rejection, which could have clinical consequences, as well as probable utility in the diagnosis of ABMR, and bioinformatics may help in unraveling the molecular mechanisms underlying ABMR conditions.

2.
Opt Express ; 31(7): 11363-11394, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155774

ABSTRACT

The availability of electromagnetic pulses with controllable field waveform and extremely short duration, even below a single optical cycle, is imperative to fully harness strong-field processes and to gain insight into ultrafast light-driven mechanisms occurring in the attosecond time-domain. The recently demonstrated parametric waveform synthesis (PWS) introduces an energy-, power- and spectrum-scalable method to generate non-sinusoidal sub-cycle optical waveforms by coherently combining different phase-stable pulses attained via optical parametric amplifiers. Significant technological developments have been made to overcome the stability issues related to PWS and to obtain an effective and reliable waveform control system. Here we present the main ingredients enabling PWS technology. The design choices concerning the optical, mechanical and electronic setups are justified by analytical/numerical modeling and benchmarked by experimental observations. In its present incarnation, PWS technology enables the generation of field-controllable mJ-level few-femtosecond pulses spanning the visible to infrared range.

3.
Nat Commun ; 12(1): 6641, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789715

ABSTRACT

Attosecond science promises to reveal the most fundamental electronic dynamics occurring in matter and it can develop further by meeting two linked technological goals related to high-order harmonic sources: improved spectral tunability (allowing selectivity in addressing electronic transitions) and higher photon flux (permitting to measure low cross-section processes). New developments come through parametric waveform synthesis, which provides control over the shape of field transients, enabling the creation of highly-tunable isolated attosecond pulses via high-harmonic generation. Here we demonstrate that the first goal is fulfilled since central energy, spectral bandwidth/shape and temporal duration of isolated attosecond pulses can be controlled by shaping the laser waveform via two key parameters: the relative-phase between two halves of the multi-octave spanning spectrum, and the overall carrier-envelope phase. These results not only promise to expand the experimental possibilities in attosecond science, but also demonstrate coherent strong-field control of free-electron trajectories using tailored optical waveforms.

4.
Bioconjug Chem ; 32(1): 88-93, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33356163

ABSTRACT

Herein we describe a method to orthogonally remove on-DNA N-Cbz, N-Alloc, N-Allyl, O-Bn, and O-Allyl protecting groups in the presence of other common protecting groups to afford free amines and carboxylic acids, respectively. The developed method uses NaBH4 as the source of hydrogen in the presence of Pd(OAc)2 under DNA aqueous conditions. In addition, under the developed conditions we were able to successfully hydrogenate triple and double bonds to totally saturated compounds. Furthermore, we introduce a new alternative procedure to reduce azides and aromatic nitro compounds to primary amines.


Subject(s)
DNA/chemistry , Palladium/chemistry , Catalysis , Gene Library , Hydrogen/chemistry
5.
Commun Chem ; 3(1): 127, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-36703354

ABSTRACT

DNA-encoded library (DEL) technology is a novel ligand identification strategy that allows the synthesis and screening of unprecedented chemical diversity more efficiently than conventional methods. However, no reports have been published to systematically study how to increase the diversity and improve the molecular property space that can be covered with DEL. This report describes the development and application of eDESIGNER, an algorithm that comprehensively generates all possible library designs, enumerates and profiles samples from each library and evaluates them to select the libraries to be synthesized. This tool utilizes suitable on-DNA chemistries and available building blocks to design and identify libraries with a pre-defined molecular weight distribution and maximal diversity compared with compound collections from other sources.

6.
Endocrinology ; 158(11): 3859-3873, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28938487

ABSTRACT

Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes.


Subject(s)
Benzoates/pharmacology , Glucagon-Like Peptide 1/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Islets of Langerhans/drug effects , Receptors, Somatostatin/antagonists & inhibitors , Spiro Compounds/pharmacology , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , HEK293 Cells , Humans , Insulin Secretion , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Rats, Zucker , Receptors, Somatostatin/genetics , Secretory Pathway/drug effects
7.
Alcohol Clin Exp Res ; 40(5): 945-54, 2016 05.
Article in English | MEDLINE | ID: mdl-27084498

ABSTRACT

BACKGROUND: The nociceptin/orphanin-FQ (or opioid receptor-like [ORL1]) receptor (NOP) is localized in the mesolimbic reward pathway and has been suggested to play a role in feeding, mood, stress, and addiction. Since its deorphanization in 1995, there has been a clear dichotomy in the literature regarding whether an agonist or antagonist would provide therapeutic benefit. Specifically, the literature reports indicate that NOP receptor antagonists produce efficacy in animal models of hyperphagia and antidepressant-like activity, whereas NOP agonists produce anxiolytic-like effects and dampen reward/addiction behaviors including ethanol consumption. METHODS: We characterize here the potent, orally bioavailable NOP antagonist, LY2940094, in rodent models of ethanol consumption, including ethanol self-administration, progressive ratio operant self-administration, stress-induced reinstatement of ethanol seeking, and in vivo microdialysis in the nucleus accumbens. RESULTS: LY2940094 dose dependently reduced homecage ethanol self-administration in Indiana alcohol-preferring (P) and Marchigian Sardinian alcohol-preferring (msP) rats, without affecting food/water intake or locomotor activity. Reduced ethanol intake in P rats did not show significant tolerance over 4 days of subchronic dosing. LY2940094 attenuated progressive ratio operant responding and break points for ethanol in P rats. Moreover, stress-induced reinstatement of ethanol seeking in msP rats was completely blocked by LY2940094. Furthermore, LY2940094 blocked ethanol-stimulated dopamine release in response to ethanol challenge (1.1 g/kg, intraperitoneally). CONCLUSIONS: Our findings demonstrate for the first time that blockade of NOP receptors attenuates ethanol self-administration and ethanol-motivated behaviors, stress-induced ethanol seeking, and ethanol-induced stimulation of brain reward pathways in lines of rats that exhibit excessive ethanol consumption. Results suggest that LY2940094 may have potential therapeutic utility in treating alcohol addiction.


Subject(s)
Drug-Seeking Behavior/drug effects , Ethanol/antagonists & inhibitors , Pyrans/pharmacology , Receptors, Opioid/drug effects , Spiro Compounds/pharmacology , Administration, Oral , Animals , Conditioning, Operant/drug effects , Dopamine/metabolism , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Female , Male , Microdialysis , Narcotic Antagonists/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Pyrans/administration & dosage , Rats , Rats, Inbred Strains , Self Administration , Spiro Compounds/administration & dosage , Nociceptin Receptor
8.
Pharmacol Res Perspect ; 4(6): e00275, 2016 12.
Article in English | MEDLINE | ID: mdl-28097008

ABSTRACT

Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide whose receptor is designated ORL1 or nociceptin receptor (NOP). We utilized a potent, selective, and orally bioavailable antagonist with documented engagement with NOP receptors in vivo to assess antidepressant- and anxiolytic-related pharmacological effects of NOP receptor blockade along with measures of cognitive and motor impingement. LY2940094 ([2-[4-[(2-chloro-4,4-difluoro-spiro[5H-thieno[2,3-c]pyran-7,4'-piperidine]-1'-yl)methyl]-3-methyl-pyrazol-1-yl]-3-pyridyl]methanol) displayed antidepressant-like behavioral effects in the forced-swim test in mice, an effect absent in NOP -/- mice. LY2940094 also augmented the behavioral effect of fluoxetine without changing target occupancies (NOP and serotonin reuptake transporter [SERT]). LY2940094 did not have effects under a differential-reinforcement of low rate schedule. Although anxiolytic-like effects were not observed in some animal models (conditioned suppression, 4-plate test, novelty-suppressed feeding), LY2940094 had effects like that of anxiolytic drugs in three assays: fear-conditioned freezing in mice, stress-induced increases in cerebellar cGMP in mice, and stress-induced hyperthermia in rats. These are the first reports of anxiolytic-like activity with a systemically viable NOP receptor antagonist. LY2940094 did not disrupt performance in either a 5-choice serial reaction time or delayed matching-to-position assay. LY2940094 was also not an activator or suppressor of locomotion in rodents nor did it induce failures of rotarod performance. These data suggest that LY2940094 has unique antidepressant- and anxiolytic-related pharmacological effects in rodents. Clinical proof of concept data on this molecule in depressed patients have been reported elsewhere.

9.
J Pharmacol Exp Ther ; 356(2): 493-502, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26659925

ABSTRACT

Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.


Subject(s)
Binge-Eating Disorder/metabolism , Energy Intake/physiology , Feeding Behavior/physiology , Narcotic Antagonists/pharmacology , Receptors, Opioid/physiology , Animals , Binge-Eating Disorder/drug therapy , CHO Cells , Cricetinae , Cricetulus , Energy Intake/drug effects , Feeding Behavior/drug effects , HEK293 Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Narcotic Antagonists/chemistry , Narcotic Antagonists/therapeutic use , Rats , Rats, Long-Evans , Treatment Outcome , Nociceptin Receptor
10.
J Med Chem ; 57(8): 3418-29, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24678969

ABSTRACT

Nociceptin/OFQ (N/OFQ) is a 17 amino acid peptide that is the endogenous ligand for the ORL1/NOP receptor. Nociceptin appears to regulate a host of physiological functions such as biological reactions to stress, anxiety, mood, and drug abuse, in addition to feeding behaviors. To develop tools to study the function of nociceptin and NOP receptor, our research effort sought to identify orally available NOP antagonists. Our effort led to the discovery of a novel chemical series based on the dihydrospiro(piperidine-4,7'-thieno[2,3-c]pyran) scaffold. Herein we show that dihydrospiro(piperidine-4,7'-thieno[2,3-c]pyran)-derived compounds are potent NOP antagonists with high selectivity versus classical opioid receptors (µ, δ, and κ). Moreover, these compounds exhibit sufficient bioavailability to produce a high level of NOP receptor occupancy in the brain following oral administration in rats.


Subject(s)
Narcotic Antagonists , Pyrans/chemical synthesis , Administration, Oral , Animals , Drug Discovery , Male , Pyrans/pharmacokinetics , Pyrans/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid , Structure-Activity Relationship , Nociceptin Receptor
11.
J Med Chem ; 55(11): 4955-67, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22541041

ABSTRACT

Currently, a lack of sufficient tools has limited the understanding of the relationship between neuropsychiatric disorders and the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor. Herein, we describe the discovery and development of an antagonist NOP receptor occupancy (RO) tracer and a novel positron emission tomography (PET) radioligand suitable to probe the NOP receptor in human clinical studies. A thorough structure-activity relationship (SAR) around the high-affinity 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2-(2-halobenzyl)-N-alkylpropanamide scaffold identified a series of subnanomolar, highly selective NOP antagonists. Subsequently, these unlabeled NOP ligands were evaluated in vivo by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in rat to determine brain uptake, kinetics and specific binding. (S)-27 was identified as a suitable unlabeled preclinical RO tracer to accurately quantify NOP receptor engagement in rat brain. Three compounds were selected for evaluation in nonhuman primates as PET tracers: (-)-26, (-)-30, and (-)-33. Carbon-11 labeling of (+)-31 yielded [(11)C]-(S)-30, which exhibited minimal generation of central nervous system (CNS) penetrant radiometabolites, improved brain uptake, and was an excellent PET radioligand in both rat and monkey. Currently [(11)C]-(S)-30 is being evaluated as a PET radiotracer for the NOP receptor in human subjects.


Subject(s)
Radiopharmaceuticals/chemical synthesis , Receptors, Opioid/metabolism , Spiro Compounds/chemical synthesis , Thiophenes/chemical synthesis , Animals , Brain/diagnostic imaging , Brain/metabolism , CHO Cells , Carbon Radioisotopes , Chromatography, Liquid , Cricetinae , Cricetulus , HEK293 Cells , Humans , Macaca , Male , Narcotic Antagonists , Positron-Emission Tomography , Radioligand Assay , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Opioid/agonists , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship , Tandem Mass Spectrometry , Thiophenes/chemistry , Thiophenes/pharmacokinetics , Nociceptin Receptor
12.
J Med Chem ; 54(8): 2687-700, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21438532

ABSTRACT

Positron emission tomography (PET) coupled to an effective radioligand could provide an important tool for understanding possible links between neuropsychiatric disorders and brain NOP (nociceptin/orphanin FQ peptide) receptors. We sought to develop such a PET radioligand. High-affinity NOP ligands were synthesized based on a 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2(2-halobenzyl)-N-alkylpropanamide scaffold and from experimental screens in rats, with ex vivo LC-MS/MS measures, three ligands were identified for labeling with carbon-11 and evaluation with PET in monkey. Each ligand was labeled by (11)C-methylation of an N-desmethyl precursor and studied in monkey under baseline and NOP receptor-preblock conditions. The three radioligands, [(11)C](S)-10a-c, gave similar results. Baseline scans showed high entry of radioactivity into the brain to give a distribution reflecting that expected for NOP receptors. Preblock experiments showed high early peak levels of brain radioactivity, which rapidly declined to a much lower level than seen in baseline scans, thereby indicating a high level of receptor-specific binding in baseline experiments. Overall, [(11)C](S)-10c showed the most favorable receptor-specific signal and kinetics and is now selected for evaluation in human subjects.


Subject(s)
Brain/diagnostic imaging , Opioid Peptides/metabolism , Animals , Chromatography, Liquid , Haplorhini , Magnetic Resonance Spectroscopy , Positron-Emission Tomography , Radioligand Assay , Rats , Stereoisomerism , Tandem Mass Spectrometry , Nociceptin
13.
J Comb Chem ; 9(5): 818-22, 2007.
Article in English | MEDLINE | ID: mdl-17645313

ABSTRACT

An automated liquid-liquid extraction workstation has been developed. This module processes up to 96 samples in an automated and parallel mode avoiding the time-consuming and intensive sample manipulation during the workup process. To validate the workstation, a highly automated and chromatography-free synthesis of differentially substituted quinazolin-4(3H)-ones with two diversity points has been carried out using isatoic anhydride as starting material.


Subject(s)
Automation , Chromatography, Liquid/instrumentation , Quinazolinones/chemical synthesis , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
14.
Bioorg Med Chem Lett ; 15(11): 2898-901, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15911276

ABSTRACT

A novel series of cis-fused 2-N,N-dimethylaminomethyl-2,3,3a,12b-tetrahydrodibenzo[b,f]furo[2,3-d]oxepin derivatives modified at position C-11 was prepared and evaluated for its potential antidepressant/anxiolytic properties. In vitro affinities for the norepinephrine transporter and for 5-HT(2A) and 5-HT(2C) receptors, as well as the ED(50) values obtained in some in vivo assays predictive for antidepressant and anxiolytic potential are reported.


Subject(s)
Benzofurans/chemical synthesis , Benzofurans/pharmacology , Norepinephrine/metabolism , Oxepins/chemical synthesis , Oxepins/pharmacology , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Norepinephrine/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins , Symporters/antagonists & inhibitors
15.
J Org Chem ; 61(2): 503-509, 1996 Jan 26.
Article in English | MEDLINE | ID: mdl-11666967

ABSTRACT

Diels-Alder reactions of (S)-2-(p-tolylsulfinyl)-1,4-benzoquinone (1a) with cyclic (cyclopentadiene and cyclohexadiene) and acyclic dienes (1-[(trimethylsilyl)oxy]-1,3-butadiene and trans-piperylene) under different thermal and Lewis acid conditions are reported. Chemoselectivity (reactions on C(2)-C(3) versus C(5)-C(6) double bonds) is mainly related to the cyclic (on C(5)-C(6)) or acyclic (on C(2)-C(3)) structure of the diene. The high pi-facial selectivity observed could be controlled by choosing adequate experimental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...