Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36135686

ABSTRACT

Penicillium digitatum is one of the most important phytopathogens. It causes deterioration and rotting of citrus fruits, generating significant economic losses worldwide. As a human pathogen, it is extremely rare. We present a case of pulmonary co-infection in a patient diagnosed with pneumonia due to SARS-CoV-2. A 20-year-old female patient, primigravid, 36 weeks of gestation, without comorbidities, and diagnosed with severe pneumonia due to the SARS-CoV-2, showed rapid lung deterioration for which their pregnancy was interrupted by surgery. The patient was hospitalized in the Intensive Care Unit (ICU), connected to mechanical ventilation and receiving corticosteroids and antibiotics. The diagnosis of pulmonary fungal infection was made through bronchoalveolar lavage (BAL) culture, and the species identification was performed by sequencing of ß-tubulin. Phylogenetic analysis with related species was performed for the confirmation of species identification. Antifungal susceptibility tests were performed for itraconazole (4 µg/mL), voriconazole (2 µg/mL), and amphotericin B (2 µg/mL). The patient was successfully treated with itraconazole. This is the second worldwide report of pulmonary infection by P. digitatum and the first in Chile. Although it is a fungus that rarely infects humans, it could represent an emerging opportunistic fungal pathogen, with associated risk factors that should be considered in the differential diagnosis of Penicillium species isolated from infections in humans.

2.
Cell Rep ; 30(3): 620-629.e6, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31968241

ABSTRACT

Integrating nutrient sensing with the synthesis of complex molecules is a central feature of metabolism. Yet the regulatory mechanisms underlying such integration are often unknown. Here, we establish that the transcription regulators Rtg1/3 are key determinants of sphingolipid homeostasis in the human fungal pathogen Candida albicans. Quantitative analysis of the C. albicans lipidome reveals Rtg1/3-dependent alterations in all complex sphingolipids and their precursors, ceramides. Mutations in the regulators render the fungus susceptible to myriocin, a sphingolipid synthesis inhibitor. Rtg1/3 exert control on the expression of several enzymes involved in the synthesis of sphingolipids' building blocks, and the regulators are activated upon engulfment of C. albicans cells by human neutrophils. We demonstrate that Rtg1p and Rtg3p are regulated at two levels, one in response to sphingolipids and the other by the nutrient sensor TOR. Our findings, therefore, indicate that the Rtg1/3 system integrates nutrient sensing into the synthesis of complex lipids.


Subject(s)
Candida albicans/metabolism , Fungal Proteins/metabolism , Homeostasis , Sphingolipids/metabolism , Adult , Candida albicans/genetics , Cell Nucleus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal , Humans , Metabolomics , Mutation/genetics , Neutrophils/metabolism , Phenotype , Phosphorylation , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Sphingolipids/biosynthesis , Subcellular Fractions/metabolism
3.
mBio ; 10(5)2019 10 15.
Article in English | MEDLINE | ID: mdl-31615961

ABSTRACT

Candida albicans is a commensal yeast of the human gut which is tolerated by the immune system but has the potential to become an opportunistic pathogen. One way in which C. albicans achieves this duality is through concealing or exposing cell wall pathogen-associated molecular patterns (PAMPs) in response to host-derived environment cues (pH, hypoxia, and lactate). This cell wall remodeling allows C. albicans to evade or hyperactivate the host's innate immune responses, leading to disease. Previously, we showed that adaptation of C. albicans to acidic environments, conditions encountered during colonization of the female reproductive tract, induces significant cell wall remodeling resulting in the exposure of two key fungal PAMPs (ß-glucan and chitin). Here, we report that this pH-dependent cell wall remodeling is time dependent, with the initial change in pH driving cell wall unmasking, which is then remasked at later time points. Remasking of ß-glucan was mediated via the cell density-dependent fungal quorum sensing molecule farnesol, while chitin remasking was mediated via a small, heat-stable, nonproteinaceous secreted molecule(s). Transcript profiling identified a core set of 42 genes significantly regulated by pH over time and identified the transcription factor Efg1 as a regulator of chitin exposure through regulation of CHT2 This dynamic cell wall remodeling influenced innate immune recognition of C. albicans, suggesting that during infection, C. albicans can manipulate the host innate immune responses.IMPORTANCECandida albicans is part of the microbiota of the skin and gastrointestinal and reproductive tracts of humans and has coevolved with us for millennia. During that period, C. albicans has developed strategies to modulate the host's innate immune responses, by regulating the exposure of key epitopes on the fungal cell surface. Here, we report that exposing C. albicans to an acidic environment, similar to the one of the stomach or vagina, increases the detection of the yeast by macrophages. However, this effect is transitory, as C. albicans is able to remask these epitopes (glucan and chitin). We found that glucan remasking is controlled by the production of farnesol, a molecule secreted by C. albicans in response to high cell densities. However, chitin-remasking mechanisms remain to be identified. By understanding the relationship between environmental sensing and modulation of the host-pathogen interaction, new opportunities for the development of innovative antifungal strategies are possible.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/physiology , Quorum Sensing/genetics , beta-Glucans/metabolism , Candida albicans/genetics , Cell Wall/metabolism , Chitin/metabolism , Glucans/metabolism , Hydrogen-Ion Concentration
4.
PLoS Genet ; 14(12): e1007884, 2018 12.
Article in English | MEDLINE | ID: mdl-30596634

ABSTRACT

The Sterol Regulatory Element Binding Proteins (SREBPs) are basic-helix-loop-helix transcription regulators that control the expression of sterol biosynthesis genes in higher eukaryotes and some fungi. Surprisingly, SREBPs do not regulate sterol biosynthesis in the ascomycete yeasts (Saccharomycotina) as this role was handed off to an unrelated transcription regulator in this clade. The SREBPs, nonetheless, expanded in fungi such as the ascomycete yeasts Candida spp., raising questions about their role and evolution in these organisms. Here we report that the fungal SREBPs diversified their DNA binding preferences concomitantly with an expansion in function. We establish that several branches of fungal SREBPs preferentially bind non-palindromic DNA sequences, in contrast to the palindromic DNA motifs recognized by most basic-helix-loop-helix proteins (including SREBPs) in higher eukaryotes. Reconstruction and biochemical characterization of the likely ancestor protein suggest that an intrinsic DNA binding promiscuity in the family was resolved by alternative mechanisms in different branches of fungal SREBPs. Furthermore, we show that two SREBPs in the human commensal yeast Candida albicans drive a transcriptional cascade that inhibits a morphological switch under anaerobic conditions. Preventing this morphological transition enhances C. albicans colonization of the mammalian intestine, the fungus' natural niche. Thus, our results illustrate how diversification in DNA binding preferences enabled the functional expansion of a family of eukaryotic transcription regulators.


Subject(s)
Candida albicans/genetics , Candida albicans/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Sterol Regulatory Element Binding Proteins/metabolism , Amino Acid Sequence , Anaerobiosis , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Evolution, Molecular , Fungal Proteins/classification , Humans , Phylogeny , Sequence Homology, Amino Acid , Sterol Regulatory Element Binding Proteins/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...