Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Alzheimers Res Ther ; 15(1): 168, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803386

ABSTRACT

Tauopathies are a group of neurodegenerative disorders characterized by the aggregation of the microtubule-associated protein tau. Aggregates of misfolded tau protein are believed to be implicated in neuronal death, which leads to a range of symptoms including cognitive decline, behavioral change, dementia, and motor deficits. Currently, there are no effective treatments for tauopathies. There are four clinical candidates in phase III trials and 16 in phase II trials. While no effective treatments are currently approved, there is increasing evidence to suggest that various therapeutic approaches may slow the progression of tauopathies or improve symptoms. This review outlines the landscape of therapeutic drugs (indexed through February 28, 2023) that target tau pathology and describes drug candidates in clinical development as well as those in the discovery and preclinical phases. The review also contains information on notable therapeutic programs that are inactive or that have been discontinued from development.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Tauopathies , Humans , Brain/metabolism , Tauopathies/drug therapy , Tauopathies/metabolism , tau Proteins/metabolism , Cognitive Dysfunction/metabolism , Alzheimer Disease/pathology
2.
Life Sci Alliance ; 6(10)2023 10.
Article in English | MEDLINE | ID: mdl-37553253

ABSTRACT

N-terminal phosphorylation at residues T3 and S13 is believed to have important beneficial implications for the biological and pathological properties of mutant huntingtin, where inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) was identified as a candidate regulator of huntingtin N-terminal phosphorylation. The paucity of mechanistic information on IKK pathways, together with the lack of sensitive methods to quantify endogenous huntingtin phosphorylation, prevented detailed study of the role of IKBKB in Huntington's disease. Using novel ultrasensitive assays, we demonstrate that IKBKB can regulate endogenous S13 huntingtin phosphorylation in a manner, dependent on its kinase activity and known regulators. We found that the ability of IKBKB to phosphorylate endogenous huntingtin S13 is mediated through a non-canonical interferon regulatory factor3-mediated IKK pathway, distinct from the established involvement of IKBKB in mutant huntingtin's pathological mechanisms mediated via the canonical pathway. Furthermore, increased huntingtin S13 phosphorylation by IKBKB resulted in decreased aggregation of mutant huntingtin in cells, again dependent on its kinase activity. These findings point to a non-canonical IKK pathway linking S13 huntingtin phosphorylation to the pathological properties of mutant huntingtin aggregation, thought to be significant to Huntington's disease.


Subject(s)
Huntington Disease , I-kappa B Kinase , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Serine/metabolism , Phosphorylation
3.
Alzheimers Dement ; 18(5): 988-1007, 2022 05.
Article in English | MEDLINE | ID: mdl-34581500

ABSTRACT

Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Biomarkers , Drug Discovery , Humans , tau Proteins
4.
J Med Chem ; 64(8): 5018-5036, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33783225

ABSTRACT

Our group has recently shown that brain-penetrant ataxia telangiectasia-mutated (ATM) kinase inhibitors may have potential as novel therapeutics for the treatment of Huntington's disease (HD). However, the previously described pyranone-thioxanthenes (e.g., 4) failed to afford selectivity over a vacuolar protein sorting 34 (Vps34) kinase, an important kinase involved with autophagy. Given that impaired autophagy has been proposed as a pathogenic mechanism of neurodegenerative diseases such as HD, achieving selectivity over Vps34 became an important objective for our program. Here, we report the successful selectivity optimization of ATM over Vps34 by using X-ray crystal structures of a Vps34-ATM protein chimera where the Vps34 ATP-binding site was mutated to approximate that of an ATM kinase. The morpholino-pyridone and morpholino-pyrimidinone series that resulted as a consequence of this selectivity optimization process have high ATM potency and good oral bioavailability and have lower molecular weight, reduced lipophilicity, higher aqueous solubility, and greater synthetic tractability compared to the pyranone-thioxanthenes.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Pyridones/chemistry , Pyrimidinones/chemistry , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , Brain/metabolism , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Huntington Disease/drug therapy , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Morpholinos/chemistry , Pyridones/metabolism , Pyridones/therapeutic use , Pyrimidinones/metabolism , Pyrimidinones/therapeutic use , Structure-Activity Relationship
5.
Bioorg Med Chem ; 28(21): 115738, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33065433

ABSTRACT

Inhibition of KEAP1-NRF2 protein-protein interaction is considered a promising strategy to selectively and effectively activate NRF2, a transcription factor which is involved in several pathologies such as Huntington's disease (HD). A library of linear peptides based on the NRF2-binding motifs was generated on the nonapeptide lead Ac-LDEETGEFL-NH2 spanning residues 76-84 of the Neh2 domain of NRF2 with the aim to replace E78, E79 and E82 with non-acidic amino acids. A deeper understanding of the features and accessibility of the T80 subpocket was also targeted by structure-based design. Approaches to improve cell permeability were investigated using both different classes of cyclic peptides and conjugation to cell-penetrating peptides. This insight will guide future design of macrocycles, peptido-mimetics and, most importantly, small neutral brain-penetrating molecules to evaluate whether NRF2 activators have utility in HD.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Peptides, Cyclic/chemistry , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Drug Design , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Molecular Dynamics Simulation , NF-E2-Related Factor 2/antagonists & inhibitors , Peptides/metabolism , Peptides/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Protein Binding , Structure-Activity Relationship
6.
Biochem Biophys Res Commun ; 521(3): 549-554, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31677786

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expansion of a CAG triplet repeat (encoding for a polyglutamine tract) within the first exon of the huntingtin gene. Expression of the mutant huntingtin (mHTT) protein can result in the production of N-terminal fragments with a robust propensity to form oligomers and aggregates, which may be causally associated with HD pathology. Several lines of evidence indicate that N17 phosphorylation or pseudophosphorylation at any of the residues T3, S13 or S16, alone or in combination, modulates mHTT aggregation, subcellular localization and toxicity. Consequently, increasing N17 phosphorylation has been proposed as a potential therapeutic approach. However, developing genetic/pharmacological tools to quantify these phosphorylation events is necessary in order to subsequently develop tool modulators, which is difficult given the transient and incompletely penetrant nature of such post-translational modifications. Here we describe the first ultrasensitive sandwich immunoassay that quantifies HTT phosphorylated at residue S13 and demonstrate its utility for specific analyte detection in preclinical models of HD.


Subject(s)
Huntingtin Protein/analysis , Animals , Cells, Cultured , Gene Knock-In Techniques , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Mice , Mutation , Neurons/chemistry , Neurons/metabolism , Phosphorylation , Protein Aggregates , Protein Processing, Post-Translational
7.
J Biol Chem ; 294(17): 6986-7001, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30842263

ABSTRACT

The gene mutated in individuals with Huntington's disease (HD) encodes the 348-kDa huntingtin (HTT) protein. Pathogenic HD CAG-expansion mutations create a polyglutamine (polyQ) tract at the N terminus of HTT that expands above a critical threshold of ∼35 glutamine residues. The effect of these HD mutations on HTT is not well understood, in part because it is difficult to carry out biochemical, biophysical, and structural studies of this large protein. To facilitate such studies, here we have generated expression constructs for the scalable production of HTT in multiple eukaryotic expression systems. Our set of HTT expression clones comprised both N- and C-terminally FLAG-tagged HTT constructs with polyQ lengths representative of the general population, HD patients, and juvenile HD patients, as well as the more extreme polyQ expansions used in some HD tissue and animal models. Our expression system yielded milligram quantities of pure recombinant HTT protein, including many of the previously mapped post-translational modifications. We characterized both apo and HTT-HTT-associated protein 40 (HAP40) complex samples produced with this HD resource, demonstrating that this toolkit can be used to generate physiologically meaningful HTT complexes. We further demonstrate that these resources can produce sufficient material for protein-intensive experiments, such as small-angle X-ray scattering, providing biochemical insight into full-length HTT protein structure. The work outlined and the tools generated here lay a foundation for further biochemical and structural work on the HTT protein and for studying its functional interactions with other biomolecules.


Subject(s)
Gene Expression , Huntingtin Protein/genetics , Mutation , Animals , Cloning, Molecular , Humans , Huntingtin Protein/metabolism , Phosphorylation , Protein Processing, Post-Translational , Spodoptera
8.
J Med Chem ; 62(6): 2988-3008, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30840447

ABSTRACT

Genetic and pharmacological evidence indicates that the reduction of ataxia telangiectasia-mutated (ATM) kinase activity can ameliorate mutant huntingtin (mHTT) toxicity in cellular and animal models of Huntington's disease (HD), suggesting that selective inhibition of ATM could provide a novel clinical intervention to treat HD. Here, we describe the development and characterization of ATM inhibitor molecules to enable in vivo proof-of-concept studies in HD animal models. Starting from previously reported ATM inhibitors, we aimed with few modifications to increase brain exposure by decreasing P-glycoprotein liability while maintaining potency and selectivity. Here, we report brain-penetrant ATM inhibitors that have robust pharmacodynamic (PD) effects consistent with ATM kinase inhibition in the mouse brain and an understandable pharmacokinetic/PD (PK/PD) relationship. Compound 17 engages ATM kinase and shows robust dose-dependent inhibition of X-ray irradiation-induced KAP1 phosphorylation in the mouse brain. Furthermore, compound 17 protects against mHTT (Q73)-induced cytotoxicity in a cortical-striatal cell model of HD.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Huntington Disease/drug therapy , Neuroprotective Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Disease Models, Animal , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacokinetics , Proof of Concept Study
9.
Mol Pharm ; 16(5): 2069-2082, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30916978

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood-brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System Agents/therapeutic use , Drug Discovery/methods , Huntington Disease/drug therapy , Models, Biological , ATP-Binding Cassette Transporters/metabolism , Animals , Astrocytes/metabolism , Capillary Permeability/physiology , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Electric Impedance , Endothelial Cells/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Solute Carrier Proteins/metabolism , Swine , Tight Junctions/metabolism
10.
Arch Biochem Biophys ; 631: 31-41, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28801166

ABSTRACT

Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a 1H-15N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site.


Subject(s)
Antioxidants/pharmacology , Drug Discovery/methods , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Protein Interaction Maps/drug effects , Amino Acid Sequence , Antioxidants/chemistry , Binding Sites , Fluorescence Resonance Energy Transfer/methods , Humans , Kelch Repeat/drug effects , Kelch-Like ECH-Associated Protein 1/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Oxidative Stress/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Surface Plasmon Resonance/methods
11.
J Am Chem Soc ; 139(26): 8820-8827, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28609090

ABSTRACT

There exists strong correlation between the extended polyglutamines (polyQ) within exon-1 of Huntingtin protein (Htt) and age onset of Huntington's disease (HD); however, the underlying molecular mechanism is still poorly understood. Here we apply extensive molecular dynamics simulations to study the folding of Htt-exon-1 across five different polyQ-lengths. We find an increase in secondary structure motifs at longer Q-lengths, including ß-sheet content that seems to contribute to the formation of increasingly compact structures. More strikingly, these longer Q-lengths adopt supercompact structures as evidenced by a surprisingly small power-law scaling exponent (0.22) between the radius-of-gyration and Q-length that is substantially below expected values for compact globule structures (∼0.33) and unstructured proteins (∼0.50). Hydrogen bond analyses further revealed that the supercompact behavior of polyQ is mainly due to the "glue-like" behavior of glutamine's side chains with significantly more side chain-side chain H-bonds than regular proteins in the Protein Data Bank (PDB). The orientation of the glutamine side chains also tend to be "buried" inside, explaining why polyQ domains are insoluble on their own.


Subject(s)
Huntingtin Protein/chemistry , Exons , Huntingtin Protein/genetics , Hydrogen Bonding , Models, Molecular , Mutation , Peptides/chemistry , Protein Aggregates , Protein Conformation, beta-Strand
12.
J Phys Chem B ; 121(18): 4713-4721, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28413881

ABSTRACT

Huntington's disease is a deadly neurodegenerative disease caused by the fibrilization of huntingtin (HTT) exon-1 protein mutants. Despite extensive efforts over the past decade, much remains unknown about the structures of (mutant) HTT exon-1 and their enigmatic roles in aggregation. Particularly, whether the first 17 residues in the N-terminal (HTT-N17) adopt a helical or a coiled structure remains unclear. Here, with the rigorous study of molecular dynamics simulations, we explored the most possible structures of HTT-N17 in both dodecylphosphocholine (DPC) micelles and aqueous solution, using three commonly applied force fields (OPLS-AA/L, CHARMM36, and AMBER99sb*-ILDNP) to examine the underlying molecular mechanisms and rule out potential artifacts. We show that local environments are essential for determining the secondary structure of HTT-N17. This is evidenced by the insertion of five hydrophobic residues of HTT-N17 into the DPC micelle, which promotes the formation of an amphipathic helix, whereas such amphipathic helices unfold quickly in aqueous solution. A relatively low free-energy barrier (∼3 kcal/mol) for the secondary structure transformation was also observed for all three force fields from their respective folding-free-energy landscapes, which accounts for possible HTT-N17 conformational changes upon environmental shifts such as membrane binding and protein complex aggregation.


Subject(s)
Micelles , Molecular Dynamics Simulation , Phosphorylcholine/analogs & derivatives , Water/chemistry , Humans , Huntingtin Protein , Phosphorylcholine/chemistry , Protein Stability , Protein Structure, Secondary , Solutions
13.
Exp Neurol ; 282: 99-118, 2016 08.
Article in English | MEDLINE | ID: mdl-27163548

ABSTRACT

Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.


Subject(s)
Electrophysiological Phenomena/drug effects , Enzyme Inhibitors/therapeutic use , Huntington Disease/drug therapy , Huntington Disease/physiopathology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pyrimidines/therapeutic use , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Electric Stimulation , Electrophysiological Phenomena/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippocampus/drug effects , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , In Vitro Techniques , Kynurenic Acid/metabolism , Kynurenine 3-Monooxygenase/metabolism , Male , Mice , Mice, Transgenic , Microdialysis , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacology , Quinolinic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection , Trinucleotide Repeats/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
16.
J Med Chem ; 58(7): 2967-87, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25760409

ABSTRACT

Through medicinal chemistry lead optimization studies focused on calculated properties and guided by X-ray crystallography and computational modeling, potent pan-JNK inhibitors were identified that showed submicromolar activity in a cellular assay. Using in vitro ADME profiling data, 9t was identified as possessing favorable permeability and a low potential for efflux, but it was rapidly cleared in liver microsomal incubations. In a mouse pharmacokinetics study, compound 9t was brain-penetrant after oral dosing, but exposure was limited by high plasma clearance. Brain exposure at a level expected to support modulation of a pharmacodynamic marker in mouse was achieved when the compound was coadministered with the pan-cytochrome P450 inhibitor 1-aminobenzotriazole.


Subject(s)
Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Blood-Brain Barrier/drug effects , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical/methods , Half-Life , Humans , Huntington Disease/drug therapy , Huntington Disease/metabolism , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells/drug effects , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 10/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship
17.
J Pharm Biomed Anal ; 107: 426-31, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25668794

ABSTRACT

Neuroactive metabolites in the kynurenine pathway of tryptophan catabolism are associated with neurodegenerative disorders. Tryptophan is transported across the blood-brain barrier and converted via the kynurenine pathway to N-formyl-L-kynurenine, which is further degraded to L-kynurenine. This metabolite can then generate a group of metabolites called kynurenines, most of which have neuroactive properties. The association of tryptophan catabolic pathway alterations with various central nervous system (CNS) pathologies has raised interest in analytical methods to accurately quantify kynurenines in body fluids. We here describe a rapid and sensitive reverse-phase HPLC-MS/MS method to quantify L-kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxy-L-kynurenine (3HK) and anthranilic acid (AA) in rat plasma. Our goal was to quantify these metabolites in a single run; given their different physico-chemical properties, major efforts were devoted to develop a chromatography suitable for all metabolites that involves plasma protein precipitation with acetonitrile followed by chromatographic separation by C18 RP chromatography, detected by electrospray mass spectrometry. Quantitation range was 0.098-100 ng/ml for 3HK, 9.8-20,000 ng/ml for KYN, 0.49-1000 ng/ml for KYNA and AA. The method was linear (r>0.9963) and validation parameters were within acceptance range (calibration standards and QC accuracy within ±30%).


Subject(s)
Blood-Brain Barrier/metabolism , Kynurenine/chemistry , Kynurenine/metabolism , Plasma/chemistry , Animals , Chromatography, High Pressure Liquid , Kynurenic Acid/blood , Kynurenic Acid/chemistry , Kynurenine/blood , Rats , Tryptophan/blood , Tryptophan/chemistry , ortho-Aminobenzoates/blood , ortho-Aminobenzoates/chemistry
18.
J Med Chem ; 58(3): 1159-83, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25590515

ABSTRACT

We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.


Subject(s)
Enzyme Inhibitors/pharmacology , Huntington Disease/drug therapy , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , CHO Cells , Cell Proliferation/drug effects , Cricetulus , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Huntington Disease/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Mice , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
19.
J Biomol Screen ; 18(8): 879-89, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23690293

ABSTRACT

Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.


Subject(s)
Enzyme Assays/methods , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Kynurenine 3-Monooxygenase/metabolism , Animals , CHO Cells , Cell Line , Chromatography, Liquid/methods , Cricetulus , Dogs , Drug Discovery , HEK293 Cells , Humans , Huntington Disease/drug therapy , Huntington Disease/metabolism , Kynurenine/analogs & derivatives , Kynurenine/biosynthesis , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/chemistry , Leukocytes, Mononuclear/drug effects , Macaca fascicularis , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Tandem Mass Spectrometry/methods
20.
Drug Metab Dispos ; 40(12): 2297-306, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22942319

ABSTRACT

Understanding whether regulation of tryptophan metabolites can ameliorate neurodegeneration is of high interest to investigators. A recent publication describes 3,4-dimethoxy-N-(4-(3-nitrophenyl)-5-(piperidin-1-ylmethyl)thiazol-2-yl)benzenesulfonamide (JM6) as a novel prodrug for the kynurenine 3-monooxygenase (KMO) inhibitor 3,4-dimethoxy-N-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonamide (Ro-61-8048) that elicits therapeutic effects in mouse models of Huntington's and Alzheimer's diseases (Cell 145:863-874, 2011). Our evaluation of the metabolism and pharmacokinetics of JM6 and Ro-61-8048 indicate instead that Ro-61-8048 concentrations in mouse plasma after JM6 administration originate from a Ro-61-8048 impurity (<0.1%) in JM6. After a 0.05 mg/kg Ro-61-8048 oral dose alone or coadministered with 10 mg/kg JM6 to mice, the Ro-61-8048 areas under the concentration-time curves (AUCs) from 0 to infinity were similar (4300 and 4900 nM × h, respectively), indicating no detectable contributions of JM6 metabolism to the Ro-61-8048 AUCs. JM6 was stable in incubations under acidic conditions and Ro-61-8048 was not a product of JM6 metabolism in vitro (plasma, blood, or hepatic models). Species differences in the quantitative rate of oxidative metabolism indicate that major circulating JM6 metabolite(s) in mice are unlikely to be major in humans: JM6 is rapidly metabolized via the piperidyl moiety in mouse (forming an iminium ion reactive intermediate) but is slowly metabolized in human (in vitro), primarily via O-dealkylation at the phenyl ring. Our data indicate that JM6 is not a prodrug for Ro-61-8048 and is not a potent KMO inhibitor.


Subject(s)
Prodrugs/pharmacokinetics , Sulfonamides/pharmacokinetics , Thiazoles/pharmacokinetics , Animals , Area Under Curve , Cell Line , Dogs , Hepatocytes/enzymology , Hepatocytes/metabolism , Humans , Madin Darby Canine Kidney Cells , Male , Metabolic Detoxication, Phase I , Mice , Mice, Inbred C57BL , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Sulfonamides/administration & dosage , Thiazoles/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...