Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34874009

ABSTRACT

As part of the Reproducibility Project: Cancer Biology, we published Registered Reports that described how we intended to replicate selected experiments from 29 high-impact preclinical cancer biology papers published between 2010 and 2012. Replication experiments were completed and Replication Studies reporting the results were submitted for 18 papers, of which 17 were accepted and published by eLife with the rejected paper posted as a preprint. Here, we report the status and outcomes obtained for the remaining 11 papers. Four papers initiated experimental work but were stopped without any experimental outcomes. Two papers resulted in incomplete outcomes due to unanticipated challenges when conducting the experiments. For the remaining five papers only some of the experiments were completed with the other experiments incomplete due to mundane technical or unanticipated methodological challenges. The experiments from these papers, along with the other experiments attempted as part of the Reproducibility Project: Cancer Biology, provides evidence about the challenges of repeating preclinical cancer biology experiments and the replicability of the completed experiments.


Subject(s)
Biomedical Research/methods , Neoplasms , Reproducibility of Results , Animals , Cell Line , Humans , Mice
2.
Physiol Rep ; 9(18): e15031, 2021 09.
Article in English | MEDLINE | ID: mdl-34545692

ABSTRACT

Skeletal muscle anatomy and physiology are sexually dimorphic but molecular underpinnings and muscle-specificity are not well-established. Variances in metabolic health, fitness level, sedentary behavior, genetics, and age make it difficult to discern inherent sex effects in humans. Therefore, mice under well-controlled conditions were used to determine female and male (n = 19/sex) skeletal muscle fiber type/size and capillarity in superficial and deep gastrocnemius (GA-s, GA-d), soleus (SOL), extensor digitorum longus (EDL), and plantaris (PLT), and transcriptome patterns were also determined (GA, SOL). Summed muscle weight strongly correlated with lean body mass (r2  = 0.67, p < 0.0001, both sexes). Other phenotypes were muscle-specific: e.g., capillarity (higher density, male GA-s), myofiber size (higher, male EDL), and fiber type (higher, lower type I and type II prevalences, respectively, in female SOL). There were broad differences in transcriptomics, with >6000 (GA) and >4000 (SOL) mRNAs differentially-expressed by sex; only a minority of these were shared across GA and SOL. Pathway analyses revealed differences in ribosome biology, transcription, and RNA processing. Curation of sexually dimorphic muscle transcripts shared in GA and SOL, and literature datasets from mice and humans, identified 11 genes that we propose are canonical to innate sex differences in muscle: Xist, Kdm6a, Grb10, Oas2, Rps4x (higher, females) and Ddx3y, Kdm5d, Irx3, Wwp1, Aldh1a1, Cd24a (higher, males). These genes and those with the highest "sex-biased" expression in our study do not contain estrogen-response elements (exception, Greb1), but a subset are proposed to be regulated through androgen response elements. We hypothesize that innate muscle sexual dimorphism in mice and humans is triggered and then maintained by classic X inactivation (Xist, females) and Y activation (Ddx3y, males), with coincident engagement of X encoded (Kdm6a) and Y encoded (Kdm5d) demethylase epigenetic regulators that are complemented by modulation at some regions of the genome that respond to androgen.


Subject(s)
Muscle, Skeletal/metabolism , Sex Characteristics , Transcriptome , Animals , Female , Male , Mice , Mice, Inbred C57BL , Microvessels/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology
3.
Am J Physiol Endocrinol Metab ; 321(1): E63-E79, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33969704

ABSTRACT

Myoglobin (Mb) is a regulator of O2 bioavailability in type I muscle and heart, at least when tissue O2 levels drop. Mb also plays a role in regulating cellular nitric oxide (NO) pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggest additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance, and insulin sensitivity in Mb knockout (Mb-/-) and wild-type (WT) mice challenged with a high-fat diet (HFD, 45% of calories). In males (n = 10/genotype) and females (n = 9/genotype) tested at 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10°C, 72 h), and glucose and insulin tolerance, were not different compared with within-sex WT controls. At ∼18 and ∼19 wk of age, female Mb-/- adiposity was ∼42%-48% higher versus WT females (P = 0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb-/-, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb-/- mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency.NEW & NOTEWORTHY The roles of myoglobin remain to be elaborated. We address sexual dimorphism in terms of outcomes in response to the loss of myoglobin in knockout mice and perform, for the first time, a series of comprehensive metabolic studies under conditions in which fat is mobilized (high-fat diet, cold). The results highlight that myoglobin is not necessary and sufficient for maintaining oxidative metabolism and point to alternative roles for this protein in muscle and heart.


Subject(s)
Muscle, Skeletal/metabolism , Myocardium/metabolism , Myoglobin/physiology , Adiposity , Animals , Body Weight , Diet, High-Fat , Energy Metabolism , Fatty Acids/metabolism , Female , Glucose Tolerance Test , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/blood supply , Myoglobin/deficiency , Myoglobin/genetics , Oxidation-Reduction , Phenotype , Sex Characteristics
4.
Am J Physiol Endocrinol Metab ; 321(1): E47-E62, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33969705

ABSTRACT

Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.


Subject(s)
Adipose Tissue, Brown/physiology , Myoglobin/physiology , Adipocytes, Brown/physiology , Adipose Tissue, Brown/chemistry , Adipose Tissue, Brown/ultrastructure , Animals , Cell Differentiation , Cells, Cultured , Diet, High-Fat , Electron Transport Complex IV/genetics , Female , Gene Expression , Lipids/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/physiology , Myoglobin/deficiency , Myoglobin/genetics , Nitric Oxide/metabolism , Oxygen/metabolism , RNA, Messenger/analysis
5.
Am J Physiol Endocrinol Metab ; 319(3): E472-E484, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32691631

ABSTRACT

Obesity and its metabolic sequelae are implicated in dysfunction of the somatosensory, sympathetic, and hypothalamic systems. Because these systems contribute to integrative regulation of energy expenditure (EE) and energy intake (EI) in response to ambient temperature (Ta) changes, we hypothesized that diet-induced obesity (DIO) disrupts Ta-associated EE-EI coupling. C57BL/6N male mice were fed a high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for ∼9.5 wk; HFD mice were then split into body weight (BWT) quartiles (n = 8 each) to study DIO-low gainers (Q1) versus -high gainers (Q4). EI and indirect calorimetry (IC) were measured over 3 days each at 10°C, 20°C, and 30°C. Responses did not differ between LFD, Q1, and Q4; EI and BWT-adjusted EE increased rapidly when transitioning toward 20°C and 10°C. In all groups, EI at 30°C was not reduced despite lower EE, resulting in positive energy balance and respiratory exchange ratios consistent with increased de novo lipogenesis, energy storage, and relative hyperphagia. We conclude that 1) systems controlling Ta-dependent acute EI/EE coupling remained intact in obese mice and 2) rapid coupling of EI/EE at cooler temperatures is an important adaptation to maintain energy stores and defend body temperature, but less critical at thermoneutrality. A post hoc analysis using digestible EI plus IC-calculated EE suggests that standard IC assumptions for EE calculation require further validation in the setting of DIO. The experimental paradigm provides a platform to query the hypothalamic, somatosensory, and sympathetic mechanisms that drive Ta-associated EI/EE coupling.


Subject(s)
Body Temperature Regulation/physiology , Energy Intake , Energy Metabolism , Obesity/metabolism , Temperature , Adipose Tissue, Brown/metabolism , Animals , Blood Glucose/metabolism , Body Composition , Body Weight , Diet, Fat-Restricted , Diet, High-Fat , Drinking , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...