Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Biomech Eng ; 146(6)2024 06 01.
Article in English | MEDLINE | ID: mdl-38329432

ABSTRACT

Aortic dissections, characterized by the propagation of a tear through the layers of the vessel wall, are critical, life-threatening events. Aortic calcifications are a common comorbidity in both acute and chronic dissections, yet their impact on dissection mechanics remains unclear. Using micro-computed tomography (CT) imaging, peel testing, and finite element modeling, this study examines the interplay between atherosclerotic calcifications and dissection mechanics. Samples cut from cadaveric human thoracic aortas were micro-CT imaged and subsequently peel-tested to map peel tension curves to the location of aortic calcifications. Empirical mode decomposition separated peel tension curves into high and low-frequency components, with high-frequency effects corresponding to interlamellar bonding mechanics and low-frequency effects to peel tension fluctuations. Finally, we used an idealized finite element model to examine how stiff calcifications affect aortic failure mechanics. Results showed that atherosclerosis influences dissection behavior on multiple length scales. Experimentally, atherosclerotic samples exhibited higher peel tensions and greater variance in the axial direction. The variation was driven by increased amplitudes of low-frequency tension fluctuations in diseased samples, indicating that more catastrophic propagations occur near calcifications. The simulations corroborated this finding, suggesting that the low-frequency changes resulted from the presence of a stiff calcification in the vessel wall. There were also modifications to the high-frequency peel mechanics, a response likely attributable to alterations in the microstructure and interlamellar bonding within the media. Considered collectively, these findings demonstrate that dissection mechanics are modified in aortic media nearby and adjacent to aortic calcifications.


Subject(s)
Aortic Dissection , Atherosclerosis , Calcinosis , Humans , X-Ray Microtomography , Aorta/diagnostic imaging , Atherosclerosis/diagnostic imaging , Aorta, Thoracic
2.
IEEE Trans Biomed Eng ; 71(1): 68-76, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37440380

ABSTRACT

OBJECTIVE: Rotors, regions of spiral wave reentry in cardiac tissues, are considered as the drivers of atrial fibrillation (AF), the most common arrhythmia. Whereas physics-based approaches have been widely deployed to detect the rotors, in-depth knowledge in cardiac physiology and electrogram interpretation skills are typically needed. The recent leap forward in smart sensing, data acquisition, and Artificial Intelligence (AI) has offered an unprecedented opportunity to transform diagnosis and treatment in cardiac ailment, including AF. This study aims to develop an image-decomposition-enhanced deep learning framework for automatic identification of rotor cores on both simulation and optical mapping data. METHODS: We adopt the Ensemble Empirical Mode Decomposition algorithm (EEMD) to decompose the original image, and the most representative component is then fed into a You-Only-Look-Once (YOLO) object-detection architecture for rotor detection. Simulation data from a bi-domain simulation model and optical mapping acquired from isolated rabbit hearts are used for training and validation. RESULTS: This integrated EEMD-YOLO model achieves high accuracy on both simulation and optical mapping data (precision: 97.2%, 96.8%, recall: 93.8%, 92.2%, and F1 score: 95.5%, 94.4%, respectively). CONCLUSION: The proposed EEMD-YOLO yields comparable accuracy in rotor detection with the gold standard in literature.


Subject(s)
Atrial Fibrillation , Deep Learning , Animals , Rabbits , Artificial Intelligence , Electrophysiologic Techniques, Cardiac/methods , Action Potentials , Atrial Fibrillation/diagnosis
3.
Article in English | MEDLINE | ID: mdl-37434040

ABSTRACT

BACKGROUND: Ventricular fibrillation (VF) is a lethal cardiac arrhythmia that is a significant cause of sudden cardiac death. Comprehensive studies of spatiotemporal characteristics of VF in situ are difficult to perform with current mapping systems and catheter technology. OBJECTIVE: The goal of this study was to develop a computational approach to characterize VF using a commercially available technology in a large animal model. Prior data suggests that characterization of spatiotemporal organization of electrical activity during VF can be used to provide better mechanistic understanding and potential ablation targets to modify VF and its substrate. We therefore evaluated intracardiac electrograms during biventricular mapping of the endocardium (ENDO) and epicardium (EPI) in acute canine studies. METHODS: To develop thresholds for organized and disorganized activity, a linear discriminant analysis (LDA)-based approach was performed to the known organized and disorganized activities recorded in ex vivo Langendorff-perfused rat and rabbit hearts using optical mapping experiments. Several frequency- and time-domain approaches were used as individual and paired features to identify the optimal thresholds for the LDA approach. Subsequently, VF was sequentially mapped in 4 canine hearts, using the CARTO mapping system with a multipolar mapping catheter in the ENDO left and right ventricles and EPI to capture the progression of VF at 3 discrete post-induction time intervals: VF period 1 (just after induction of VF to 15 min), VF period 2 (15 to 30 min), and VF period 3 (30 to 45 min). The developed LDA model, cycle lengths (CL), and regularity indices (RI) were applied to all recorded intracardiac electrograms to quantify the spatiotemporal organization of VF in canine hearts. RESULTS: We demonstrated the presence of organized activity in the EPI as VF progresses, in contrary to the ENDO, where the activity stays disorganized. The shortest CL always occurred in the ENDO, especially the RV, indicating a faster VF activity. The highest RI was found in the EPI in all hearts for all VF stages, indicating spatiotemporal consistency of RR intervals. CONCLUSION: We identified electrical organization and spatiotemporal differences throughout VF in canine hearts from induction to asystole. Notably, the RV ENDO is characterized by a high level of disorganization and faster VF frequency. In contrast, EPI has a high spatiotemporal organization of VF and consistently long RR intervals.

5.
Entropy (Basel) ; 25(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36832698

ABSTRACT

Atrial Fibrillation (AF) is the most common cardiac arrhythmia. Signal-processing approaches are widely used for the analysis of intracardiac electrograms (iEGMs), which are collected during catheter ablation from patients with AF. In order to identify possible targets for ablation therapy, dominant frequency (DF) is widely used and incorporated in electroanatomical mapping systems. Recently, a more robust measure, multiscale frequency (MSF), for iEGM data analysis was adopted and validated. However, before completing any iEGM analysis, a suitable bandpass (BP) filter must be applied to remove noise. Currently, no clear guidelines for BP filter characteristics exist. The lower bound of the BP filter is usually set to 3-5 Hz, while the upper bound (BP¯th) of the BP filter varies from 15 Hz to 50 Hz according to many researchers. This large range of BP¯th subsequently affects the efficiency of further analysis. In this paper, we aimed to develop a data-driven preprocessing framework for iEGM analysis, and validate it based on DF and MSF techniques. To achieve this goal, we optimized the BP¯th using a data-driven approach (DBSCAN clustering) and demonstrated the effects of different BP¯th on subsequent DF and MSF analysis of clinically recorded iEGMs from patients with AF. Our results demonstrated that our preprocessing framework with BP¯th = 15 Hz has the best performance in terms of the highest Dunn index. We further demonstrated that the removal of noisy and contact-loss leads is necessary for performing correct data iEGMs data analysis.

6.
Circ Res ; 132(4): 519-540, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795845

ABSTRACT

During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.


Subject(s)
Induced Pluripotent Stem Cells , Tissue Engineering , Humans , Tissue Engineering/methods , Myocytes, Cardiac/physiology , Myocardium , Cell Differentiation/physiology , Cell Proliferation
7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430922

ABSTRACT

Bionic-engineered tissues have been proposed for testing the performance of cardiovascular medical devices and predicting clinical outcomes ex vivo. Progress has been made in the development of compliant electronics that are capable of monitoring treatment parameters and being coupled to engineered tissues; however, the scale of most engineered tissues is too small to accommodate the size of clinical-grade medical devices. Here, we show substantial progress toward bionic tissues for evaluating cardiac ablation tools by generating a centimeter-scale human cardiac disk and coupling it to a hydrogel-based soft-pressure sensor. The cardiac tissue with contiguous electromechanical function was made possible by our recently established method to 3D bioprint human pluripotent stem cells in an extracellular matrix-based bioink that allows for in situ cell expansion prior to cardiac differentiation. The pressure sensor described here utilized electrical impedance tomography to enable the real-time spatiotemporal mapping of pressure distribution. A cryoablation tip catheter was applied to the composite bionic tissues with varied pressure. We found a close correlation between the cell response to ablation and the applied pressure. Under some conditions, cardiomyocytes could survive in the ablated region with more rounded morphology compared to the unablated controls, and connectivity was disrupted. This is the first known functional characterization of living human cardiomyocytes following an ablation procedure that suggests several mechanisms by which arrhythmia might redevelop following an ablation. Thus, bionic-engineered testbeds of this type can be indicators of tissue health and function and provide unique insight into human cell responses to ablative interventions.


Subject(s)
Bionics , Catheter Ablation , Humans , Catheter Ablation/methods , Myocytes, Cardiac/metabolism , Tissue Engineering/methods , Arrhythmias, Cardiac/metabolism
8.
Article in English | MEDLINE | ID: mdl-35948726

ABSTRACT

BACKGROUND: While the triggers for ventricular fibrillation (VF) are well-known, the substrate required for its maintenance remains elusive. We have previously demonstrated dynamic spatiotemporal changes across VF from electrical induction of VF to asystole. Those data suggested that VF drivers seemed to reside in the distal RV and LV. However, signals from these areas were not recorded continuously. The aim of this study was to map these regions of significance with stationary basket electrodes from induction to asystole to provide further insights into the critical substrate for VF rhythm sustenance in canines. METHODS: In six healthy canines, three multipolar basket catheters were positioned in the distal right ventricle (RV), RV outflow tract, and distal left ventricle (LV), and remained in place throughout the study. VF was induced via direct current application from an electrophysiologic catheter. Surface and intracardiac electrograms were recorded simultaneously and continuously from baseline, throughout VF, and until asystole, in order to get a complete electrophysiologic analysis of VF. Focused data analysis was also performed via two defined stages of VF: early VF (immediately after induction of VF to 10 min) and late VF (after 10 min up to VF termination and asystole). RESULTS: VF was continuously mapped for a mean duration of 54 ± 9 min (range 42-70 min). Immediately after initiation of VF in the early phase, the distal LV region appeared to drive the maintenance of VF. Towards the terminal stage of VF, the distal RV region appeared to be responsible for VF persistence. In all canines, we noted local termination of VF in the LV, while VF on surface ECG continued; conversely, subsequent spontaneous termination of VF in the RV was associated with termination of VF on surface ECG into a ventricular escape rhythm. Continuous mapping of VF showed trends towards an increase in peak-to-peak ventricular electrogram cycle length (p = 0.06) and a decrease in the ventricular electrogram amplitude (p = 0.06) after 40 min. Once we could no longer discern surface QRS activity, we demonstrated local ventricular myocardial capture in both the RV and LV but could not reinitiate sustained VF despite aggressive ventricular burst pacing. CONCLUSIONS: This study describes the evolution of VF from electrical initiation to spontaneous VF termination without hemodynamic support in healthy canines. These data are hypothesis-generating and suggest that critical substrate for VF maintenance may reside in both the distal RV and LV depending on stage of VF. Further studies are needed to replicate these findings with hemodynamic support and to translate such findings into clinical practice. Ventricular fibrillation maintenance may be dependent on critical structures in the distal RV. ECG: electrocardiogram; LV: left ventricle; RV: right ventricle; RVOT: right ventricular outflow tract; VF: ventricular fibrillation.

9.
Adv Mater Technol ; 7(3)2022 Mar.
Article in English | MEDLINE | ID: mdl-35668819

ABSTRACT

To extend the preservation of donor hearts beyond the current 4-6 h, this paper explores heart cryopreservation by vitrification-cryogenic storage in a glass-like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non-uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, "nanowarming", which uses silica-coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures. Nanowarming has been applied to cells and tissues, and a proof of principle study suggests it is possible in the heart, but proper physical and biological characterization especially in organs is still lacking. Here, using a rat heart model, controlled machine perfusion loading and unloading of CPA and sIONPs, cooling to a vitrified state, and fast and uniform nanowarming without crystallization or cracking is demonstrated. Further, nanowarmed hearts maintain histologic appearance and endothelial integrity superior to convective rewarming and indistinguishable from CPA load/unload control hearts while showing some promising organ-level (electrical) functional activity. This work demonstrates physically successful heart vitrification and nanowarming and that biological outcomes can be expected to improve by reducing or eliminating CPA toxicity during loading and unloading.

10.
PLoS One ; 17(3): e0264570, 2022.
Article in English | MEDLINE | ID: mdl-35290386

ABSTRACT

Myocardial ischemia occurs when blood flow to the heart is reduced, preventing the heart muscle from receiving enough oxygen required for survival. Several anatomical and electrophysiological changes occur at the ischemic core (IC) and border zone (BZ) during myocardial ischemia, for example, gap junctional remodeling, changes in ionic channel kinetics and electrophysiologic changes in cell excitability, which promote the development of cardiac arrhythmia. Ephaptic coupling (EpC), which is an electrical field effect developed in the shared cleft space between adjacent cells, has been suggested to rescue the conduction when gap junctions are impaired, such as myocardial ischemia. In this manuscript, we explored the impact of EpC, electrophysiological and anatomical components of myocardial ischemia on reentry termination during non-ischemic and ischemic condition. Our results indicated that EpC and BZ with complex geometry have opposite effects on the reentry termination. In particular, the presence of homogeneous EpC terminates reentry, whereas BZ with complex geometry alone facilitates reentry by producing wave break-up and alternating conduction block. The reentry is terminated in the presence of homogeneous or heterogeneous EpC despite the presence of complex geometry of the BZ, independent of the location of BZ. The inhibition of reentry can be attributed to a current-to-load mismatch. Our results points to an antiarrhythmic role of EpC and a pro-arrhythmic role of BZ with complex geometry.


Subject(s)
Arrhythmias, Cardiac , Myocardial Ischemia , Gap Junctions , Heart , Humans , Myocardium
11.
Front Physiol ; 12: 690453, 2021.
Article in English | MEDLINE | ID: mdl-34630135

ABSTRACT

During cardiac arrhythmias, dynamical patterns of electrical activation form and evolve, which are of interest to understand and cure heart rhythm disorders. The analysis of these patterns is commonly performed by calculating the local activation phase and searching for phase singularities (PSs), i.e., points around which all phases are present. Here we propose an alternative framework, which focuses on phase defect lines (PDLs) and surfaces (PDSs) as more general mechanisms, which include PSs as a specific case. The proposed framework enables two conceptual unifications: between the local activation time and phase description, and between conduction block lines and the central regions of linear-core rotors. A simple PDL detection method is proposed and applied to data from simulations and optical mapping experiments. Our analysis of ventricular tachycardia in rabbit hearts (n = 6) shows that nearly all detected PSs were found on PDLs, but the PDLs had a significantly longer lifespan than the detected PSs. Since the proposed framework revisits basic building blocks of cardiac activation patterns, it can become a useful tool for further theory development and experimental analysis.

13.
J Clin Invest ; 131(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34324437

ABSTRACT

Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmia risk after myocardial infarct (MI). MI induced in mice by coronary artery ligation resulted in reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves on the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK KO reduced electrical remodeling in response to MI, with shortened QTc intervals, fewer VT episodes, and higher survival rates. Pharmacological PERK inhibition had similar effects. In conclusion, we found that activated PERK during MI contributed to arrhythmia risk by the downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmia risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmia mechanism and that maintenance of ion channel levels is antiarrhythmic.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Unfolded Protein Response/physiology , eIF-2 Kinase/antagonists & inhibitors , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Down-Regulation , Female , Heart Disease Risk Factors , Humans , Indoles/pharmacology , Ion Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Cardiovascular , Protein Kinase Inhibitors/pharmacology , Unfolded Protein Response/drug effects , eIF-2 Kinase/deficiency , eIF-2 Kinase/genetics
14.
J Am Heart Assoc ; 10(11): e020750, 2021 06.
Article in English | MEDLINE | ID: mdl-34027678

ABSTRACT

Life-threatening ventricular arrhythmias and sudden cardiac death are often preceded by cardiac alternans, a beat-to-beat oscillation in the T-wave morphology or duration. However, given the spatiotemporal and structural complexity of the human heart, designing algorithms to effectively suppress alternans and prevent fatal rhythms is challenging. Recently, an antiarrhythmic constant diastolic interval pacing protocol was proposed and shown to be effective in suppressing alternans in 0-, 1-, and 2-dimensional in silico studies as well as in ex vivo whole heart experiments. Herein, we provide a systematic review of the electrophysiological conditions and mechanisms that enable constant diastolic interval pacing to be an effective antiarrhythmic pacing strategy. We also demonstrate a successful translation of the constant diastolic interval pacing protocol into an ECG-based real-time control system capable of modulating beat-to-beat cardiac electrical activity and preventing alternans. Furthermore, we present evidence of the clinical utility of real-time alternans suppression in reducing arrhythmia susceptibility in vivo. We provide a comprehensive overview of this promising pacing technique, which can potentially be translated into a clinically viable device that could radically improve the quality of life of patients experiencing abnormal cardiac rhythms.


Subject(s)
Algorithms , Arrhythmias, Cardiac/physiopathology , Cardiac Pacing, Artificial/methods , Electrocardiography , Heart Rate/physiology , Arrhythmias, Cardiac/prevention & control , Diastole , Humans
15.
J Cardiovasc Electrophysiol ; 32(5): 1268-1280, 2021 05.
Article in English | MEDLINE | ID: mdl-33570241

ABSTRACT

BACKGROUND: Catheter ablation is associated with limited success rates in patients with persistent atrial fibrillation (AF). Currently, existing mapping systems fail to identify critical target sites for ablation. Recently, we proposed and validated several techniques (multiscale frequency [MSF], Shannon entropy [SE], kurtosis [Kt], and multiscale entropy [MSE]) to identify pivot point of rotors using ex-vivo optical mapping animal experiments. However, the performance of these techniques is unclear for the clinically recorded intracardiac electrograms (EGMs), due to the different nature of the signals. OBJECTIVE: This study aims to evaluate the performance of MSF, MSE, SE, and Kt techniques to identify the pivot point of the rotor using unipolar and bipolar EGMs obtained from numerical simulations. METHODS: Stationary and meandering rotors were simulated in a 2D human atria. The performances of new approaches were quantified by comparing the "true" core of the rotor with the core identified by the techniques. Also, the performances of all techniques were evaluated in the presence of noise, scar, and for the case of the multielectrode multispline and grid catheters. RESULTS: Our results demonstrate that all the approaches are able to accurately identify the pivot point of both stationary and meandering rotors from both unipolar and bipolar EGMs. The presence of noise and scar tissue did not significantly affect the performance of the techniques. Finally, the core of the rotors was correctly identified for the case of multielectrode multispline and grid catheter simulations. CONCLUSION: The core of rotors can be successfully identified from EGMs using novel techniques; thus, providing motivation for future clinical implementations.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Animals , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Electrophysiologic Techniques, Cardiac , Entropy , Heart Atria , Humans
16.
Front Physiol ; 12: 767190, 2021.
Article in English | MEDLINE | ID: mdl-35126172

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia and precursor to other cardiac diseases. Catheter ablation is associated with limited success rates in patients with persistent AF. Currently, existing mapping systems fail to identify critical target sites for ablation. Recently, we proposed and validated several individual techniques, such as dominant frequency (DF), multiscale frequency (MSF), kurtosis (Kt), and multiscale entropy (MSE), to identify active sites of arrhythmias using simulated intracardiac electrograms (iEGMs). However, the individual performances of these techniques to identify arrhythmogenic substrates are not reliable. OBJECTIVE: This study aimed to develop a similarity score using various iEGM analysis techniques to more accurately identify the spatial location of active sites of arrhythmia in patients with AF. METHODS: Clinical bipolar iEGMs were obtained from patients with AF who underwent either successful (m = 4) or unsuccessful (m = 4) catheter ablation. A similarity score (0-3) was developed via the earth mover's distance (EMD) approach based on a combination of DF, MSF, MSE, and Kt techniques. RESULTS: Individual techniques successfully discriminated between successful and unsuccessful AF ablation patients but were not reliable in identifying active spatial sites of AF. However, the proposed similarity score was able to pinpoint the spatial sites with high values (active AF sites) that were observed only in patients with unsuccessful AF termination, suggesting that these active sites were missed during the ablation procedure. CONCLUSION: Arrhythmogenic substrates with abnormal electrical activity are identified in patients with unsuccessful AF termination after catheter ablation, suggesting clinical efficacy of similarity score.

17.
Entropy (Basel) ; 22(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-33286303

ABSTRACT

Paroxysmal atrial fibrillation (Paro. AF) is challenging to identify at the right moment. This disease is often undiagnosed using currently existing methods. Nonlinear analysis is gaining importance due to its capability to provide more insight into complex heart dynamics. The aim of this study is to use several recently developed nonlinear techniques to discriminate persistent AF (Pers. AF) from normal sinus rhythm (NSR), and more importantly, Paro. AF from NSR, using short-term single-lead electrocardiogram (ECG) signals. Specifically, we adapted and modified the time-delayed embedding method to minimize incorrect embedding parameter selection and further support to reconstruct proper phase plots of NSR and AF heart dynamics, from MIT-BIH databases. We also examine information-based methods, such as multiscale entropy (MSE) and kurtosis (Kt) for the same purposes. Our results demonstrate that embedding parameter time delay ( τ ), as well as MSE and Kt values can be successfully used to discriminate between Pers. AF and NSR. Moreover, we demonstrate that τ and Kt can successfully discriminate Paro. AF from NSR. Our results suggest that nonlinear time-delayed embedding method and information-based methods provide robust discriminating features to distinguish both Pers. AF and Paro. AF from NSR, thus offering effective treatment before suffering chaotic Pers. AF.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 414-417, 2020 07.
Article in English | MEDLINE | ID: mdl-33018016

ABSTRACT

Atrial Fibrillation (AF) is most common sustained cardiac arrhythmia and a precursor to many fatal cardiac conditions. Catheter ablation, which is a minimally invasive treatment, is associated with limited success rates in patients with persistent AF. Rotors are believed to maintain AF and core of rotors are considered to be robust targets for ablation. Recently, multiscale entropy (MSE) was proposed to identify the core of rotors in ex-vivo rabbit hearts. However, MSE technique is sensitive to intrinsic parameters, such as scale factor and template dimension, that may lead to an imprecise estimation of entropy measures. The purpose of this research is optimize MSE approach to improve its accuracy and sensitivity in rotor core identification using simulated EGMs from human atrial model. Specifically, we have identified the optimal time scale factor (τopt) and optimal template dimension (Τopt) that are needed for efficient rotor core identification. The τopt was identified to be 10, using a convergence graph, and the Τopt (~20 ms) remained the same at different sampling rates, indicating that optimized MSE will be efficient in identifying core of the rotor irrespective of the signal acquisition system.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Animals , Atrial Fibrillation/surgery , Electrophysiologic Techniques, Cardiac , Entropy , Heart Atria , Humans , Rabbits
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2606-2609, 2020 07.
Article in English | MEDLINE | ID: mdl-33018540

ABSTRACT

Over the last few years, the use of cardiac mapping for effective diagnosis and treatment of arrhythmias has increased significantly. In the clinical environment, electroanatomical mapping (EAM) is performed during the electrophysiological procedures using proprietary systems such as CARTO, EnSite Precision, RHYTHMIA, etc. These systems generate the 3D model of patient-specific atria with the electrical activity (i.e., intracardiac electrograms (iEGMs)) displayed on it, for further identification of the sources of arrhythmia and for guiding cardiac ablation therapy. Recently, several novel techniques were developed to perform iEGMs analysis to more accurately identify the arrhythmogenic sites. However, there is a difficulty in incorporating the results of iEGMs analysis back to EAM systems due to their proprietary constraints. This created a hurdle in the further development of novel techniques to help navigate patient-specific clinical ablation therapy. Thus, we developed an open source software, VIEgram1, that allows researchers to visualize the results of the various iEGMs analysis on a patient-specific 3D atria model. It eliminates the dependency of the academic environment on the proprietary EAM systems, thereby making the process of retrospective mapping extremely convenient and time efficient. Here, we demonstrate the features of VIEgram such as visual inspection of iEGMs, flexibility in implementing custom iEGMs analysis techniques and interpolation schemes, and spatial analysis.


Subject(s)
Catheter Ablation , Electrophysiologic Techniques, Cardiac , Arrhythmias, Cardiac/diagnosis , Heart Atria , Humans , Retrospective Studies
20.
Chaos ; 30(8): 083123, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32872833

ABSTRACT

Cardiac alternans is a proarrhythmic state in which the action potential duration (APD) of cardiac myocytes alternate between long and short values and often occurs under conditions of rapid pacing of cardiac tissue. In the ventricles, alternans is especially dangerous due to the life-threatening risk of developing arrhythmias, such as ventricular fibrillation. Alternans can be formed in periodically paced tissue as a result of pacing itself. Recently, it has been demonstrated that this pacing-induced alternans can be prevented by performing constant diastolic interval (DI) pacing, in which DI is independent of APD. However, constant DI pacing is difficult to implement in experimental settings since it requires the real-time measurement of APD. A more practical way was proposed based on electrocardiograms (ECGs), which give an indirect measure of the global DI relaxation period through the TR interval assessment. Previously, we demonstrated that constant TR pacing prevented alternans formation in isolated Langendorff-perfused rabbit hearts. However, the efficacy of "local" constant DI pacing vs "global" constant TR pacing in preventing alternans formation has never been investigated. Thus, the purpose of this study was to implement an ECG-based constant TR pacing in a 1D numerical model of human ventricular tissue and to compare the dynamical behavior of cardiac tissue with that resulted from a constant DI pacing. The results showed that both constant TR and constant DI pacing prevented the onset of alternans until lower basic cycle length when compared to periodic pacing. For longer cable lengths, constant TR pacing was shown to exhibit greater control on alternans than constant DI pacing.


Subject(s)
Arrhythmias, Cardiac , Heart Ventricles , Action Potentials , Animals , Cardiac Pacing, Artificial , Diastole , Humans , Myocytes, Cardiac , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL