Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(51): 20717-20718, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36567662
2.
ACS Omega ; 7(39): 35217-35232, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211076

ABSTRACT

In an effort to prepare small molecule mimics of the active site of lytic polysaccharide monooxygenase (LPMO), three monoanionic tridentate N donor ligands comprising a central deprotonated amide group flanked by two neutral donors were prepared, and their coordination chemistry with Cu(I) and Cu(II) was evaluated. With Cu(I), a dimer formed, which was characterized by X-ray crystallography and NMR spectroscopy. A variety of mononuclear and dinuclear Cu(II) species with a range of auxiliary ligands (MeCN, Cl-, OH-, OAc-, OBz-, CO3 2-) were prepared and characterized by X-ray diffraction and various spectroscopies (UV-vis, EPR). The complexes exhibit structural similarities to the LPMO active site.

3.
J Am Chem Soc ; 144(43): 20047-20055, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36255282

ABSTRACT

Aspects of the proposed pathway combining chain-end and enantiomorphic site control for the stereospecific polymerization of lactide (LA) were investigated through studies of aluminum complexes supported by enantiopure and racemic bipyrrolidine-based salan ligands, Lig1AlOBn and Lig2AlOBn. Spectroscopic analysis of stoichiometric initiation reactions and the definition of the stereochemistry of the selective formation of the "match" single-insertion products by X-ray crystallography led to key conclusions about the observed stereocontrol. Notably, it was determined to rely heavily on the preference for the trio of stereocenters around the metal to have a "match" formation (RR-ligand + S-polymer), which works synergistically with the enantiomorphic site preference of the catalyst to ring-open next to a stereocenter of a monomer of the same chirality as that of the ligand, resulting in highly heterotactic or syndiotactic PLA from rac- or meso-LA, respectively.


Subject(s)
Aluminum , Polymerization , Aluminum/chemistry , Ligands , Stereoisomerism , Crystallography, X-Ray
5.
Inorg Chem ; 61(14): 5435-5441, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35400150
6.
J Am Chem Soc ; 144(18): 8362-8370, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35476538

ABSTRACT

Stereocomplexation is a useful strategy for the enhancement of polymer properties by the co-crystallization of polymer strands with opposed chirality. Yet, with the exception of PLA, stereocomplexes of biodegradable polyesters are relatively underexplored and the relationship between polymer microstructure and stereocomplexation remains to be delineated, especially for copolymers comprising two different chiral monomers. In this work, we resolved the two enantiomers of a non-symmetric chiral anhydride (CPCA) and prepared a series of polyesters from different combinations of racemic and enantiopure epoxides and anhydrides, via metal-catalyzed ring-opening copolymerization (ROCOP). Intriguingly, we found that only specific chiral combinations between the epoxide and anhydride building blocks result in the formation of semicrystalline polymers, with a single stereocenter inversion inducing a change from amorphous to semicrystalline copolymers. Stereocomplexes of the latter were prepared by mixing an equimolar amount of the two enantiomeric copolymers, yielding materials with increased melting temperatures (ca. 20 °C higher) compared to their enantiopure constituents. Following polymer structure optimization, the stereocomplex of one specific copolymer combination exhibits a particularly high melting temperature (Tm = 238 °C).


Subject(s)
Polyesters , Polymers , Anhydrides , Epoxy Compounds/chemistry , Polyesters/chemistry , Polymerization , Polymers/chemistry
7.
Chem Rev ; 122(6): 6322-6373, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35133803

ABSTRACT

Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.


Subject(s)
Polymers , Polymers/chemistry
8.
Inorg Chem ; 61(5): 2662-2668, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35078314

ABSTRACT

A unique high-valent copper nitrite species, LCuNO2, was accessed via the reversible one-electron oxidation of [M][LCuNO2] (M = NBu4+ or PPN+). The complex LCuNO2 reacts with 2,4,6-tri-tert-butylphenol via a typical proton-coupled electron transfer (PCET) to yield LCuTHF and the 2,4,6-tri-tert-butylphenoxyl radical. The reaction between LCuNO2 and 2,4-di-tert-butylphenol was more complicated. It yielded two products: the coupled bisphenol product expected from a H-atom abstraction and 2,4-di-tert-butyl-6-nitrophenol, the product of an unusual anaerobic nitration. Various mechanisms for the latter transformation were considered.

9.
Inorg Chem ; 60(24): 18561-18566, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34923828
11.
Inorg Chem ; 60(19): 14489-14490, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34542995
12.
J Inorg Biochem ; 222: 111498, 2021 09.
Article in English | MEDLINE | ID: mdl-34120095

ABSTRACT

With the goal of generating a (peroxo)tricopper species analogous to the Peroxy Intermediate proposed for multicopper oxidases, solutions of the copper-superoxide complex [K(Krypt)][LCuO2] (L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Krypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) were reacted with the dicopper(I) complex [(TPBN)Cu2(MeCN)2][PF6]2 at -70 °C (TPBN = N,N,N',N'-tetrakis-(2-pyridylmethyl)-1,4-diaminobutane). A metastable intermediate formed, which on the basis of UV-vis, EPR, and resonance Raman spectroscopy was proposed to derive from reaction of two equivalents of the copper-superoxide with one equivalent of the dicopper(I) complex to yield a complex with two (peroxo)dicopper moieties rather than the desired (peroxo)tricopper PI model. A similar intermediate formed upon reaction of [K(Krypt)][LCuO2] with [(BPMA)Cu(MeCN)][PF6] (BPMA = N,N-bis(2-pyridylmethyl)-methyl-amine), which contained the same donor set as provided by TPBN. Comparison of resonance Raman data and consideration of structural preferences for LCuX species led to hypothesis of a µ-η1:η2-peroxo structure for both intermediates.


Subject(s)
Coordination Complexes/chemistry , Peroxides/chemistry , Superoxides/chemistry , Azabicyclo Compounds/chemistry , Coordination Complexes/chemical synthesis , Copper/chemistry , Ligands , Molecular Structure , Peroxides/chemical synthesis , Pyridines/chemistry
13.
Inorg Chem ; 60(7): 5217-5223, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33733755

ABSTRACT

With the aim of drawing comparisons to the highly reactive complex LCuOH (L = bis(2,6-diisopropylphenylcarboxamido)pyridine), the complexes [Bu4N][LCuSR] (R = H or Ph) were prepared, characterized by spectroscopy and X-ray crystallography, and oxidized at low temperature to generate the species assigned as LCuSR on the basis of spectroscopy and theory. Consistent with the smaller electronegativity of S versus O, redox potentials for the LCuSR-/0 couples were ∼50 mV lower than for LCuOH-/0, and the rates of the proton-coupled electron transfer reactions of LCuSR with anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine at -80 °C were significantly slower (by more than 100 times) than the same reaction of LCuOH. Density functional theory (DFT) and time-dependent DFT calculations on LCuZ (Z = OH, SH, SPh) revealed subtle differences in structural and UV-visible parameters. Further comparison to complexes with Z = F, Cl, and Br using complete active space (CAS) self-consistent field and localized orbital CAS configuration interaction calculations along with a valence-bond-like interpretation of the wave functions showed differences with previously reported results ( J. Am. Chem. Soc. 2020, 142, 8514), and argue for a consistent electronic structure across the entire series of complexes, rather than a change in the nature of the ligand field arrangement for Z = F.

14.
J Am Chem Soc ; 143(9): 3295-3299, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33621089

ABSTRACT

Formal Cu(III) complexes bearing an oxygen-based auxiliary ligand ([CuOR]2+, R = H or CH2CF3) were stabilized by modulating the donor character of supporting ligand LY (LY = 4-Y, N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Y = H or OMe) and/or the basicity of the auxiliary ligand, enabling the first characterization of these typically highly reactive cores by NMR spectroscopy and X-ray crystallography. Enhanced lifetimes in solution and slowed rates of PCET with a phenol substrate were observed. NMR spectra corroborate the S = 0 ground states of the complexes, and X-ray structures reveal shortened Cu-ligand bond distances that match well with theory.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Crystallography, X-Ray , Density Functional Theory , Ligands , Models, Chemical , Molecular Structure , Oxidation-Reduction
15.
Inorg Chem ; 60(1): 1-3, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33390016
16.
ACS Macro Lett ; 10(5): 609-615, 2021 05 18.
Article in English | MEDLINE | ID: mdl-35570761

ABSTRACT

Two renewable, structurally analogous monomers, isosorbide undecenoate (IU) and glucarodilactone undecenoate (GDLU) reacted with pentaerythritol tetrakis(3-mercaptopropionate) (PETT) via thiol-ene photopolymerization to form IU-PETT and GDLU-PETT thermosets. Despite their chemical similarity, uniaxial tensile testing showed that GDLU-PETT exhibited a strain-hardening behavior and is significantly tougher than IU-PETT. To understand this observation, in situ tensile testing and wide-angle X-ray scattering experiments (WAXS) were conducted. While the 2D WAXS patterns of IU-PETT displayed an isotropic halo during uniaxial deformation, they exhibited a change from an isotropic halo to a pair of scattering arcs for the GDLU-PETT samples. Density functional theory calculations further revealed that the GDLU alkyl chains are less angled than the IU alkyl chains. Based on these results, we postulate that the GDLU molecules can more easily order and align during uniaxial deformation, hence increasing intermolecular interactions between the GDLU molecules and contributing to the observed strain hardening behavior of their thermosets. This study exemplifies how molecules with subtle differences in their chemical structures can alter the structures and thermophysical properties of the resulting polymers in unpredictable ways.


Subject(s)
Polymers , Sulfhydryl Compounds , Carbohydrates , Polymers/chemistry , Sulfhydryl Compounds/chemistry
17.
Chem Commun (Camb) ; 56(90): 14027-14030, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33099587

ABSTRACT

Pentacoordinate Al catalysts comprising bipyridine (bpy) and phenanthroline (phen) backbones were synthesized and their catalytic activity in epoxide/anhydride copolymerization was investigated and compared to (t-Busalph)AlCl. Stoichiometric reactions of tricyclic anhydrides with Al alkoxide complexes produced ring-opened products that were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography, revealing key regio- and stereochemical aspects.

18.
Inorg Chem ; 59(19): 13803-13804, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32936631
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...