Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(7): e2305519, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814382

ABSTRACT

Two different nanostructures of two dissimilar highly-potent active electrocatalysts, P-dopped metallic-(1T)-Fe-VSe2 (P,Fe-1T-VSe2 ) nanosheet and P-dopped Fe-CoSe2 (P,Fe-CoSe2 ) nanorods are hybridized and integrated into a single heterostructure (P,Fe-(VCo)Se2 ) on Ni-foam for high-performance water splitting (WS). The catalytic efficiency of VSe2 nanosheets is first enhanced by enriching metallic (1T)-phase, then forming bimetallic Fe-V selenide, and finally by P-doping. Similarly, the catalytic efficiency of CoSe2 nanorods is boosted by first fabricating Fe-Co bimetallic selenide and then P-doping. To develop super-efficient electrocatalysts for WS, two individual electrocatalysts P,Fe-1T-VSe2 nanosheet and P,Fe-CoSe2 are hybridized and integrated to form a heterostructure (P,Fe-(VCo)Se2 ). Metallic (1T)-phase of transition metal dichalcogenides has much higher conductivity than the 2H-phase, while bimetallization and P-doping activate basal planes, develop various active components, and form heterostructures that develop a synergistic interfacial effect, all of which, significantly boost the catalytic efficacy of the P,Fe-(VCo)Se2 . P,Fe-(VCo)Se2 shows excellent performance requiring very low overpotential (ηHER = 50 mV@10 mAcm-2 and ηOER = 230 mV@20 mAcm-2 ). P,Fe-(VCo)Se2 (+, -) device requires a cell potential of 1.48 V to reach 10 mA cm-2 for overall WS.

2.
J Mater Chem B ; 12(1): 202-221, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38073612

ABSTRACT

This study delves into investigating alternative methodologies for anti-microbial therapy by focusing on the mechanistic assessment of carbon dots (CDs) synthesized from F. benghalensis L. extracts. These biogenic CDs have shown remarkable broad-spectrum anti-bacterial activity even against multi-drug resistant (MDR) bacterial strains, prompting a deeper examination of their potential as novel anti-microbial agents. The study highlights the significant detrimental impact of CDs on bacterial cells through oxidative damage, which disrupts the delicate balance of ROS control within the cells. Notably, even at low doses, the anti-bacterial activity of CDs against MDR strains of P. aeruginosa and E. cloacae is highly effective, demonstrating their promise as potent antimicrobial agents. The research sheds light on the capacity of CDs to generate ROS, leading to membrane lipid peroxidation, loss of membrane potential, and rupture of bacterial cell membranes, resulting in cytoplasmic leakage. SEM and TEM analysis revealed time-dependent cell surface, morphological, and ultrastructural changes such as elongation of the cells, irregular surface protrusion, cell wall and cell membrane disintegration, internalization, and aggregations of CDs. These mechanisms offer a comprehensive explanation of how CDs exert their anti-bacterial effects. We also determined the status of plasma membrane integrity and evaluated live (viable) and dead cells upon CD exposure by flow cytometry. Furthermore, comet assay, biochemical assays, and SDS PAGE identify DNA damage, carbohydrate and protein leakage, and distinct differences in protein expression, adding another layer of understanding to the mechanisms behind CDs' anti-bacterial activity. These findings pave the way for future research on managing ROS levels and developing CDs with enhanced anti-bacterial properties, presenting a breakthrough in anti-microbial therapy.


Subject(s)
Anti-Infective Agents , Carbon , Reactive Oxygen Species/metabolism , Carbon/chemistry , Anti-Infective Agents/pharmacology , Oxidative Stress , Cell Membrane/metabolism , Bacteria
3.
ACS Appl Mater Interfaces ; 12(13): 15128-15137, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32142255

ABSTRACT

In quest of a stable structure throughout redox reactions, an approach of B-site ordering (0D arrangement) of cations in double perovskites is adopted. Here, we report B-site cation ordering in double perovskite Sr2CoMoO6-δ (DP-SCM) that tends to a favorable rock salt structure (0D arrangement). The synergy of Co/Mo having good redox ability further facilitates high oxygen mobility. A high content of oxygen vacancy examined using XPS and EPR facilitates a high oxygen anion diffusion rate (2.03 × 10-11 cm2 s-1). Moreover, fast kinetics (ΔEP ≈ 0.013 V@ 1 mV s-1) of charge storage prohibits any phase transformation reflecting the excellent cycle life (125% retention up to 5000 cycles). Such fast kinetics is majorly furnished from anion intercalation with little involvement from double layer mechanism (Cdl ≈ 42.1 F g-1). DP-SCM achieves a resultant capacitance of 747 F g-1@ 1 A g-1 with a rate capability of 56% up to 10 A g-1. Motivated by outstanding performance of DP-SCM electrodes, a symmetric cell is assembled with a 1.4 V operating potential that delivers a high energy density of 64 Wh kg-1@855 W kg-1. This work on double perovskites suggests that the advance understanding of cation ordering and charge storage mechanism can provide a new direction to fabricate highly capacitive electrode materials.

4.
ChemSusChem ; 11(23): 4123-4130, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30207431

ABSTRACT

Enriched with oxygen vacancies, Mo-doped strontium cobaltite (SrCo0.9 Mo0.1 O3-δ , SCM) is synthesized as an oxygen anion-intercalated charge-storage material through the sol-gel method. The supplemented oxygen vacancies, good electrical conductivity, and high ion diffusion coefficient bestow the SCM electrode with excellent specific capacitance (1223.34 F g-1 ) and specific capacity (168.88 mAh g-1 ) at 1 A g-1 . The decisive constant (b-value) deduced for the charge storage mechanism (low scan-rate region) is nearly 0.8, indicating a highly capacitive process. In the high scan-rate region, however, the b-value is almost 0.5, and a linear pattern of charge (q) versus the inverse of the square root of the scan rate (v-1/2 ) is obtained. The results reveal O2- diffusion as the rate-limiting factor for charge storage. Furthermore, a hybrid cell (SCM∥LRGONR) is fabricated by using lacey, reduced graphene oxide nanoribbon (LRGONR) as the negative electrode, which exhibits a high energy density (74.8 Wh kg-1 at a power density of 734.5 W kg-1 ). With a charging time of only 20.7 s, the cell sustains a very high energy density (33 Wh kg-1 ) with a high power delivery rate (6600 W kg-1 ). The excellent cycling stability (165.1 % activated specific capacitance retention and 97.6 % of the maximum value attained) after 10 000 charge-discharge cycles, demonstrates SCM is a potential electrode material for supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...