Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8610, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616195

ABSTRACT

There are fewer studies on Trichoderma diversity in agricultural fields. The rhizosphere of 16 crops was analyzed for Trichoderma species in 7 districts of Rajasthan state of India. Based on DNA sequence of translation elongation factor 1α (tef-1α), and morphological characteristics, 60 isolates were identified as 11 species: Trichoderma brevicompactum, species in Harzianum clade identified as T. afroharzianum, T. inhamatum, T. lentiforme, T. camerunense, T. asperellum, T. asperelloides, T. erinaceum, T. atroviride, T. ghanense, and T. longibrachiatum. T. brevicompactum is the most commonly occurring strain followed by T. afroharzianum. No new species were described in this study. T. lentiforme, showed its first occurrence outside the South American continent. The morphological and cultural characteristics of the major species were observed, described, and illustrated in detail. The isolates were tested for their antagonistic effect against three soilborne plant pathogens fungi: Sclerotium rolfsii, Rhizoctonia solani, and Fusarium verticillioides in plate culture assays. One of the most potent strains was T. afroharzianum BThr29 having a maximum in vitro inhibition of S. rolfsii (76.6%), R. solani (84.8%), and F. verticillioides (85.7%). The potential strain T. afroharzianum BThr29 was also found to be efficient antagonists against soil borne pathogens in in vivo experiment. Such information on crop selectivity, antagonistic properties, and geographic distribution of Trichoderma species will be beneficial for developing efficient Trichoderma-based biocontrol agents.


Subject(s)
Rhizosphere , Trichoderma , India , Trichoderma/genetics , Crops, Agricultural , Genetic Variation
2.
Plant Sci ; 340: 111937, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38043729

ABSTRACT

Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.


Subject(s)
Gossypium , Gossypol , Humans , Gossypium/metabolism , Cottonseed Oil/metabolism , Cotton Fiber , Gossypol/metabolism , Genomics
3.
Front Plant Sci ; 13: 963150, 2022.
Article in English | MEDLINE | ID: mdl-36092393

ABSTRACT

The study was undertaken to characterize the total phenolics, flavonoids, essential oils, quinones, tannins and antioxidant activity of 15 samples of wild Murraya koenigii (L.) Spreng. (MK) leaves obtained from different locations of Himachal Pradesh at various growth stages. The results indicated a significant variation in total phenolic content which ranged from [(170.09 ± 4.59 to 303.57 ± 7.94) in pre-flowering, (266.48 ± 7.49 to 450.01 ± 11.78) in the flowering stage, and (212.72 ± 5.37 to 363.85 ± 9.79) in fruiting stage], expressed as mg tannic acid equivalents (TAE)/g. The total flavonoid content ranged from [(15.17 ± 0.36 to 33.40 ± 0.81) in pre-flowering, (25.16 ± 0.67 to 58.17 ± 1.52) in flowering stage, and (17.54 ± 0.42 to 37.34 ± 0.97) in fruiting stage], expressed as mg catechin equivalent (CE)/g. Total tannin content ranged from [(75.75 ± 1.69 to 143 ± 3.74) in pre-flowering, (116 ± 3.26 to 207 ± 5.42) in the flowering stage, and (47 ± 1.18 to 156 ± 4.05) in fruiting stage], expressed as mg TAE/g. The essential oil content ranged from (0.64 ± 0.01 to 0.89 ± 0.02%) in pre-flowering, (0.85 ± 0.02 to 1 ± 0.02%) in flowering stage, and (0.54 ± 0.01 to 0.7 ± 0.01%) in fruiting stage. Quinones ranged from [(2.05 ± 0.05 to 2.97 ± 0.07) in pre-flowering, (3.07 ± 0.07 to 4.95 ± 0.13) in flowering stage, and (1.02 ± 0.02 to 1.96 ± 0.04) in fruiting stage], expressed as mM/min/g tissue. Antioxidant activity ranged from [(4.01 ± 0.09 to 7.42 ± 0.17) in pre-flowering, (8.08 ± 0.19 to 13.60 ± 0.35) in flowering stage, and (3.11 ± 0.06 to 6.37 ± 0.15) in fruiting stage], expressed as µg/ml. Data was subjected to multivariate analysis using principal component analysis (PCA), hierarchical clustering analysis (HCA). This was used for elucidating the intricate relationships between the phytochemical properties. All evaluated phytochemical parameters significantly increased during the growth transition from pre-flowering to the flowering stage, followed by their gradual decrease during the fruiting stage. The present study can serve as rationale for commercializing MK for aromatic and phytopharmaceutical industries.

4.
Pest Manag Sci ; 78(7): 3183-3192, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35478320

ABSTRACT

BACKGROUND: Phytophthora infestans is a late blight-causing oomycetes pathogen. It rapidly evolves and adapts to the host background and new fungicide molecules within a few years of their release, most likely because of the predominance of transposable elements in its genome. Frequent applications of fungicides cause environmental concerns. Here, we developed target-specific RNA interference (RNAi)-based molecules, along with nanoclay carriers, that when sprayed on plants are capable of effectively reducing late blight infection. RESULTS: Targeted the genes unique to sporulation, early satge infection and the metabolism pathway stages based on in an our own microarray data. We used nanoclay as a carrier for sorbitol dehydrogenase, heat shock protein 90, translation elongation factor 1-α, phospholipase-D like 3 and glycosylphosphatidylinositol-anchored acidic serine-threonine-rich HAM34-like protein double-stranded (ds)RNAs, which were assessed by culture bioassay, detached leaf assay and spray methods, and revealed a reduction in growth, sporulation and symptom expression. Plants sprayed with multigene targeted dsRNA-nanoclay showed enhanced disease resistance (4% disease severity) and less sporulation (<1 × 103 ) compared with plants sprayed with dsRNA alone. CONCLUSION: The use of nanoclay with multigene targeted dsRNA was assumed to be involved in effective delivery, protection and boosting the action of RNAi as a spray-induced gene silencing approach (SIGS). A significant reduction in growth, sporulation, disease severity and decreased gene expression authenticates the effects of SIGS on late blight progression. This study demonstrated as a proof of concept the dsRNA-nanoclay SIGS approach, which could be used as an alternative to chemical fungicides and transgenic approaches to develop an environmentally friendly novel plant protection strategy for late blight. © 2022 Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Solanum tuberosum , Disease Resistance/genetics , Fungicides, Industrial/pharmacology , Phytophthora infestans/genetics , Plant Diseases/prevention & control , RNA, Double-Stranded/genetics , Solanum tuberosum/genetics
5.
Methods Mol Biol ; 2408: 211-226, 2022.
Article in English | MEDLINE | ID: mdl-35325425

ABSTRACT

Double-stranded RNA (dsRNAs) molecules are the precursors and effective triggers of RNAi in most organisms. RNAi can be induced by the direct introduction of dsRNAs in plants, fungi, insects, and nematodes. Until now RNAi is usually established by transformation of the plant with a construct that produces hairpin RNAs. Alternatively, advances in RNA biology demonstrated efficiently the in vitro method of large-scale synthesis of dsRNA molecule. Here we describe the de novo synthesis of dsRNA molecule targeting the specific gene of interest for functional application. Selection of off-target effective siRNA regions, flanking of T7 promoter sequences, T7 polymerase reaction, and maintenance of the stability of dsRNA molecules are the main criteria of this method to obtain pure and effective yield for functional applications. IPTG (isopropyl-ß-D-thiogalactopyranoside) induced, T7 express E. coli cells, could be used for large scale synthesis of dsRNA molecule are also described in this method.


Subject(s)
Escherichia coli , RNA, Double-Stranded , Escherichia coli/genetics , Plants/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering
6.
Food Chem ; 385: 132636, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35339804

ABSTRACT

Millets are recently being recognized as emerging food ingredients with multifaceted applications. Whole grain flours made from millets, exhibit diverse chemical compositions, starch digestibility and physicochemical properties. A food matrix can be viewed as a section of food microstructure, commonly coinciding with a physical spatial domain that interacts or imparts specific functionalities to a particular food constituent. The complex millet-based food matrices can help individuals to attain nutritional benefits due to the intricate and unique digestive properties of these foods. This review helps to fundamentally understand the binary and ternary interactions of millet-based foods. Nutritional bioavailability and bioaccessibility are also discussed based on additive, synergistic, masking, the antagonistic or neutralizing effect of different food matrix components on each other and the surrounding medium. The molecular basis of these interactions and their effect on important functional attributes like starch retrogradation, gelling, pasting, water, and oil holding capacity is also discussed.


Subject(s)
Edible Grain , Millets , Edible Grain/chemistry , Flour/analysis , Humans , Millets/chemistry , Starch/chemistry , Whole Grains
7.
Food Chem ; 386: 132694, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35334323

ABSTRACT

Guava processing industries generate peel and seeds as primary waste fractions. Guava seeds obtained after fruit processing possess untapped potential in the field of food science due to the presence of a diversity of nutritional and bioactive compounds. Along with offering a detailed understanding of the nutritional attributes of guava seeds, the present review comprehensively elaborates on the therapeutic activities of their bioactive compounds, their techno-functional properties, and their other edible and nonedible applications. The limited molecular and biochemical mechanistic studies outlining the antioxidant, immunomodulatory, anticancer, antimicrobial, neuroprotective and antidiabetic activities of guava seeds available in the literature are also extensively discussed in this review. The use of guava seed constituents as food additives and food functional and structural modulators, primarily as fat reducers, emulsifiers, water and oil holding agents, is also conceptually explained. Additional human intervention and molecular mechanistic studies deciphering the effects of guava seeds on various diseases and human health are warranted.


Subject(s)
Psidium , Antioxidants/analysis , Food Industry , Fruit/chemistry , Humans , Psidium/chemistry , Seeds/chemistry
8.
Compr Rev Food Sci Food Saf ; 21(2): 1958-1978, 2022 03.
Article in English | MEDLINE | ID: mdl-35080794

ABSTRACT

According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.


Subject(s)
Plasma Gases , Vegetables , Antioxidants , Cell Wall , Fruit , Plasma Gases/pharmacology
9.
Biomed Pharmacother ; 146: 112498, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34953395

ABSTRACT

Huge quantities of byproducts/wastes generated in onion processing are usually discarded, but they are excellent sources of bioactive compounds and phytochemicals. However, with growing interest in the sustainable use of resources and the circular economy to reduce adverse impacts on the environment, food processing wastes such as onion peel/skin can be extracted and employed as inputs in developing or reformulating nutrient supplements, and pharmacological drugs. This review highlights major bioactive components, especially total phenolics, total flavonoid, quercetin and its derivatives present in onion peel/skin and their therapeutic applications as cardioprotective, neuroprotective, antiobesity, antidiabetic, anticancer and antimicrobial agents. The present review emphasized that onion peel is one of the important agricultural by-products which is rich in bioactive compounds and can be utilized as health promoting ingredient especially in pharmacological and biomedical fields. Thus, with increasing burden of life style disorders/non-communicable diseases, finding suitable natural alternative for their treatment is one major concern of the researchers and onion peel and its extract can be exploited as a prime ingredient.


Subject(s)
Onions/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology , Anti-Obesity Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Cardiotonic Agents/pharmacology , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Neuroprotective Agents/pharmacology , Phenols/pharmacology
10.
Biomed Pharmacother ; 142: 112018, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34449317

ABSTRACT

The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products.


Subject(s)
Phytochemicals/chemistry , Plant Extracts/chemistry , Solanum lycopersicum/chemistry , Animals , Dietary Supplements , Food Industry/economics , Humans , Industrial Waste/economics , Industrial Waste/prevention & control , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Seeds , Waste Management/methods
11.
Carbohydr Polym ; 269: 118319, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294331

ABSTRACT

Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.


Subject(s)
Pectins/chemistry , Pectins/therapeutic use , Animals , Cell Line, Tumor , Emulsifying Agents/chemistry , Humans , Hydrolysis , Molecular Structure , Pectins/pharmacology , Plants/chemistry , Rheology , Structure-Activity Relationship , Viscosity
12.
Foods ; 10(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200904

ABSTRACT

Apricot (Prunus armeniaca L.) is a nutritious fruit, rich in bioactive compounds, known for their health benefits. The present study attempts to evaluate nutritional (sugars, organic acids, minerals) and nutraceutical traits (total phenolics, flavonoids, carotenoids, antioxidant activity) of six commercial apricot genotypes grown in India. Antioxidant activity was determined using three in-vitro assays, namely CUPRAC (cupric reducing antioxidant capacity), FRAP (ferric reducing antioxidant power) and DPPH (1,1-diphenyl-2-picryl-hydrazyl). Significant (p < 0.05) differences were observed in the genotypes concerning nutritional and nutraceutical traits. Sucrose accounted for more than 60% of total sugars in most genotypes, followed by glucose and fructose. Citric acid accounted for more than 50% of the total organic acids present, followed by malic and succinic acids. Apricot is a good source of potassium (1430.07 to 2202.69 mg/100 g dwb) and iron (2.69 to 6.97 mg/100 g dwb) owing to its mineral composition. Total carotenoids content ranged from 0.44 to 3.55 mg/100 g, with ß-carotene accounting for 33-84% of the total content. The results strongly suggest that genotypes 'CITH-A-1' and 'CITH-A-2', which have high dry matter and carotenoids content, are well suited for drying. 'Roxana' and 'CITH-A-3' are great for fresh consumption, while 'Shakarpara' and 'Gold Cot' are excellent for juice processing.

13.
Biomolecules ; 11(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919068

ABSTRACT

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


Subject(s)
Annona/chemistry , Annona/metabolism , Phytochemicals/analysis , Alkaloids/analysis , Alkaloids/chemistry , Annona/drug effects , Anti-Infective Agents , Antioxidants/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Humans , Hypoglycemic Agents/analysis , Phenols/analysis , Phenols/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism
14.
Foods ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916183

ABSTRACT

Psidium guajava (L.) belongs to the Myrtaceae family and it is an important fruit in tropical areas like India, Indonesia, Pakistan, Bangladesh, and South America. The leaves of the guava plant have been studied for their health benefits which are attributed to their plethora of phytochemicals, such as quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin, gallic acid, catechin, epicatechin, chlorogenic acid, epigallocatechin gallate, and caffeic acid. Extracts from guava leaves (GLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antidiarrheal, antimicrobial, lipid-lowering, and hepatoprotection activities. In the present review, we comprehensively present the nutritional profile and phytochemical profile of GLs. Further, various bioactivities of the GL extracts are also discussed critically. Considering the phytochemical profile and beneficial effects of GLs, they can potentially be used as an ingredient in the development of functional foods and pharmaceuticals. More detailed clinical trials need to be conducted to establish the efficacy of the GL extracts.

15.
Antioxidants (Basel) ; 10(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669341

ABSTRACT

Mangifera indica L. belongs to the family of Anacardiaceae and is an important fruit from South and Southeast Asia. India, China, Thailand, Indonesia, Pakistan, Mexico, Brazil, Bangladesh, Nigeria, and the Philippines are among the top mango producer countries. Leaves of the mango plant have been studied for their health benefits, which are attributed to a plethora of phytochemicals such as mangiferin, followed by phenolic acids, benzophenones, and other antioxidants such as flavonoids, ascorbic acid, carotenoids, and tocopherols. The extracts from mango leaves (MLs) have been studied for their biological activities, including anti-cancer, anti-diabetic, anti-oxidant, anti-microbial, anti-obesity, lipid-lowering, hepato-protection, and anti-diarrheal. In the present review, we have elaborated on the nutritional and phytochemical profile of the MLs. Further, various bioactivities of the ML extracts are also critically discussed. Considering the phytochemical profile and beneficial effects of the MLs, they can be used as a potential ingredient for the development of functional foods and pharmaceutical drugs. However, more detailed clinical trials still needed to be conducted for establishing the actual efficacy of the ML extracts.

16.
Food Chem ; 353: 129431, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33714109

ABSTRACT

Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.


Subject(s)
Green Chemistry Technology , Plant Extracts/chemistry , Plants/chemistry , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purification , Microwaves , Phenols/chemistry , Phenols/isolation & purification , Plants/metabolism , Solid Phase Extraction
17.
Funct Integr Genomics ; 21(2): 215-229, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33611637

ABSTRACT

Temperature plays an important role in potato tuberization. The ideal night temperature for tuber formation is ~17 °C while temperature beyond 22 °C drastically reduces the tuber yield. Moreover, high temperature has several undesirable effects on the plant and tubers. Investigation of the genes involved in tuberization under heat stress can be helpful in the generation of heat-tolerant potato varieties. Five genes, including StSSH2 (succinic semialdehyde reductase isoform 2), StWTF (WRKY transcription factor), StUGT (UDP-glucosyltransferase), StBHP (Bel1 homeotic protein), and StFLTP (FLOWERING LOCUS T protein), involved in tuberization and heat stress in potato were investigated. The results of our microarray analysis suggested that these genes regulate and function as transcriptional factors, hormonal signaling, cellular homeostasis, and mobile tuberization signals under elevated temperature in contrasting KS (Kufri Surya) and KCM (Kufri Chandramukhi) potato cultivars. However, no detailed report is available which establishes functions of these genes in tuberization under heat stress. Thus, the present study was designed to validate the functions of these genes in tuber signaling and heat tolerance using virus-induced gene silencing (VIGS). Results indicated that VIGS transformed plants had a consequential reduction in StSSH2, StWTF, StUGT, StBHP, and StFLTP transcripts compared to the control plants. Phenotypic observations suggest an increase in plant senescence, reductions to both number and size of tubers, and a decrease in plant dry matter compared to the control plants. We also establish the potency of VIGS as a high-throughput technique for functional validation of genes.


Subject(s)
Gene Silencing , Heat-Shock Response/genetics , Plant Tubers/genetics , Solanum tuberosum/genetics , Gene Expression Regulation, Plant/genetics , Hot Temperature , Plant Proteins/genetics , Plant Tubers/growth & development , Plant Tubers/virology , Solanum tuberosum/growth & development , Solanum tuberosum/virology , Temperature
18.
Food Chem ; 334: 127561, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32711272

ABSTRACT

Grapefruit (Citrus paradisi) peel (GP) is rich in flavonoids and phenolics which have several proven pharmacological effects. However, their chemical instability towards oxygen, light and heat limits its applications in food industries. In the present study, we evaluated the feasibility of fabricating grapefruit-peel-phenolic (GPP) nano-emulsion in mustard oil using ultrasonication. Response surface methodology (RSM) optimization revealed that sonication time of 9.5 min at 30% amplitude and 0.52% Span-80 produced the stable GPP nano-emulsion with a droplet size of 29.73 ± 1.62 nm. Results indicate that both ultrasonication and Span-80 can assist the fabrication of a stabilized nano-emulsion. This study is one of its kind where nano-encapsulation of GPP into W/O emulsion was done to stabilize the active compound inside mustard oil and then the nano-emulsion was used to extend oxidative stability of mustard oil. Findings provide a basic guideline to formulate stable nano-emulsions for their use in active food packaging, oils, and pharmaceuticals.


Subject(s)
Citrus paradisi/chemistry , Emulsions/chemistry , Mustard Plant/chemistry , Nanostructures/chemistry , Plant Oils/chemistry , Polyphenols/chemistry , Antioxidants/chemistry , Food Storage , Fruit/chemistry , Hexoses/chemistry , Oxidation-Reduction , Sonication
19.
Plant Foods Hum Nutr ; 75(4): 614-620, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33006129

ABSTRACT

Conventional techniques for phenolics extraction from pomegranate (Punica granatum) peel (PP) have several insufficiencies like longer time duration, bioactive degradation, excess use of harmful chemicals and solvents. In the present study, we established the synergistic use of two non-conventional extraction strategies i.e., enzyme-assisted extraction (EAE) using a cellulolytic enzyme preparation (Viscozyme) followed by microwave-assisted extraction (MAE) for efficient recovery of phenolics from PP. This optimized method was individually compared with EAE, MAE, and conventional solvent extraction (CSE) methods for recovering PP phenolics with maximum antioxidant activity (AOA). Extracts were analyzed for AOA using ferric reducing antioxidant power (FRAP) and cupric reducing AOA (CUPRAC) methods. Response surface methodology (RSM), was used as an optimization tool to achieve maximum yield of phenolics and with highest AOA at power 443.5 W, time 131.0 min, and solvent-to-solid ratio 23.6:1. The predicted values for maximum phenolics and AOA obtained through RSM were 305 mg GAE/g, 1788 µmol TE/g (FRAP) and 2641 µmol TE/g (CUPRAC), respectively. Phenolic contents of only 94.6, 165.46, and 197.6 mg GAE/g were achieved through CSE, EAE and MAE, respectively. Here we substantiate the auxiliary role of Viscozyme and microwave treatment in achieving high phenolic content and AOA from PPs. Phenolic rich extracts are known to act as multi-target ligands that inhibit various enzymes involved in diseases like Alzheimer's, Parkinson's, and diabetes mellitus. The extract can be commercially exploited for the development of functional foods, supplements, and natural preservatives.


Subject(s)
Antioxidants , Microwaves , Phenols , Plant Extracts , Pomegranate
20.
Int J Biol Macromol ; 164: 304-320, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32682968

ABSTRACT

A number of studies have established the potential of chitosan and alginate-based edible film/coatings for preserving the quality attributes of fruits and vegetables. Findings demonstrate that these films/coatings act as a barrier on the surface of fruits and vegetables which causes higher moisture and water retention, create favourable micro-environments by optimizing the concentration of gases and delays ripening. Sincere efforts are being further made to improve the efficiency of edible films using functional additives such as phenolics, essential oils (EOs) and nano-forms. These additives have unlocked a new dimension for enhancing functional properties of alginate/chitosan-based films. These functional compounds are now emerging as an important component of edible films/coatings for prolonging shelf-life of fruits and vegetables. The present review comprehensively elaborates recent studies on functional additives and their mechanism of action. Here we also establish their proficiency in extending quality and shelf-life of various fruits including guava, pear, blueberries and vegetables like cucumber, capsicum and mushroom. Principles behind antimicrobial and antioxidant activities of additives in preventing the food spoilage are also reviewed. Competency of phenolics, EOs and nano-forms in extending the shelf-life without affecting the nutritional properties and safety aspects of the fruits and vegetables still require further attention.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Edible Films , Food Preservation , Fruit , Vegetables , Food Packaging , Food Preservatives/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...