Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 132(7): 076001, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427861

ABSTRACT

The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot-noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables us, in principle, to determine the effective charge q of the charge carriers of that tunnel. This can be used to detect electron pairing in superconductors: In the normal state, the noise corresponds to single electron tunneling (q=1e), while in the paired state, the noise corresponds to q=2e. Here, we use a newly developed amplifier to reveal that in typical mesoscopic superconducting junctions, the shot noise does not reflect the signatures of pairing and instead stays at a level corresponding to q=1e. We show that transparency can control the shot noise, and this q=1e is due to the large number of tunneling channels with each having very low transparency. Our results indicate that in typical mesoscopic superconducting junctions, one should expect q=1e noise and lead to design guidelines for junctions that allow the detection of electron pairing.

2.
Adv Mater ; 34(9): e2106481, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34961972

ABSTRACT

Long after the heady days of high-temperature superconductivity, the oxides came back into the limelight in 2004 with the discovery of the 2D electron gas (2DEG) in SrTiO3 (STO) and several heterostructures based on it. Not only do these materials exhibit interesting physics, but they have also opened up new vistas in oxide electronics and spintronics. However, much of the attention has recently shifted to KTaO3 (KTO), a material with all the "good" properties of STO (simple cubic structure, high mobility, etc.) but with the additional advantage of a much larger spin-orbit coupling. In this state-of-the-art review of the fascinating world of KTO, it is attempted to cover the remarkable progress made, particularly in the last five years. Certain unsolved issues are also indicated, while suggesting future research directions as well as potential applications. The range of physical phenomena associated with the 2DEG trapped at the interfaces of KTO-based heterostructures include spin polarization, superconductivity, quantum oscillations in the magnetoresistance, spin-polarized electron transport, persistent photocurrent, Rashba effect, topological Hall effect, and inverse Edelstein Effect. It is aimed to discuss, on a single platform, the various fabrication techniques, the exciting physical properties and future application possibilities of this family of materials.

3.
RSC Adv ; 11(28): 16942-16954, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479670

ABSTRACT

Magnetic hyperthermia-based cancer therapy mediated by magnetic nanomaterials is a promising antitumoral nanotherapy, owning to its power to generate heat under the application of an alternating magnetic field. However, although the ultimate targets of these treatments, the heating potential and its relation with the magnetic behavior of the employed magnetic nanomaterials are rarely studied. Here we provide a bridge between the heating potential and magnetic properties such as anisotropy energy constant and saturation magnetization of the nano-magnets by simultaneous investigation of both hyperthermia and magnetism under a controlled set of variables given by response surface methodology. In the study, we have simultaneously investigated the effect of various synthesis parameters like cation ratio, reaction temperature and time on the magnetic response and heat generation of manganese-doped ferrite nanomaterials synthesized by a simple hydrothermal route. The optimum generation of heat and magnetization is obtained at a cationic ratio of approximately 42 at a temperature of 100 °C for a time period of 4 h. The optimized nanomaterial was then evaluated for in vitro magnetic hyperthermia application for cancer therapy against glioblastoma in terms of cell viability, effect on cellular cytoskeleton and morphological alterations. Furthermore, the correlation between the magnetic properties of the synthesized nanomaterial with its hyperthermia output was also established using K.V.M s variable where K, V and M s are the anisotropy energy constant, volume, and saturation magnetization of the nanomaterial respectively. It was found that the intensity of heat generation decreases with an increase in K.V.M s value, beyond 950 J emu g-1.

4.
Nat Commun ; 11(1): 874, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054860

ABSTRACT

Among the perovskite oxide family, KTaO3 (KTO) has recently attracted considerable interest as a possible system for the realization of the Rashba effect. In this work, we report a novel conducting interface by placing KTO with another insulator, LaVO3 (LVO) and report planar Hall effect (PHE) and anisotropic magnetoresistance (AMR) measurements. This interface exhibits a signature of strong spin-orbit coupling. Our experimental observations of two fold AMR and PHE at low magnetic fields (B) is similar to those obtained for topological systems and can be intuitively understood using a phenomenological theory for a Rashba spin-split system. Our experimental data show a B2 dependence of AMR and PHE at low magnetic fields that could also be explained based on our model. At high fields (~8 T), we see a two fold to four fold transition in the AMR that could not be explained using only Rashba spin-split energy spectra.

5.
ACS Appl Bio Mater ; 3(2): 779-788, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-35019282

ABSTRACT

Despite the promising role of magnetic hyperthermia in cancer therapy, its use in patients has been restricted by hurdles that include inefficient targeting of magnetic particles to the tumor site, limited bioavailability, and high toxicity, etc. Taking advantage of the unique metabolic property of cancer cells, we explored the potential of these cells to biosynthesize magnetic nanoparticles for potential hyperthermia applications. Treatment of cancer cells with a mixture of FeCl2 and zinc gluconate resulted in a significant increase in intracellular Fe and Zn content in these cells. Exposure of these cells to an alternating magnetic field (AMF) for 30 min resulted in a substantial temperature rise of 5-6 °C. The in situ formed particles were identified as iron oxide and ZnO nanoparticles. Based on the magnetic property and size, the iron oxide nanoparticles were classified as superparamagnetic iron oxide nanoparticles (SPIONS) comprising a mixture of magnetite (Fe3-δO4) and maghemite (γ-Fe2O3). The role of reactive oxygen species (H2O2) and the involvement of the glycolytic pathway in the biosynthesis of the nanoparticles were confirmed using appropriate in vitro studies. The simplicity of treatment, the specificity of cells capable of synthesis of SPIONS, and the hyperthermia response observed in cancer cells indicate a promising strategy to achieve effective magnetic hyperthermia for cancer therapy.

6.
BMC Genet ; 20(1): 2, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30616524

ABSTRACT

BACKGROUND: Identification of unknown fungal species aids to the conservation of fungal diversity. As many fungal species cannot be cultured, morphological identification of those species is almost impossible. But, DNA barcoding technique can be employed for identification of such species. For fungal taxonomy prediction, the ITS (internal transcribed spacer) region of rDNA (ribosomal DNA) is used as barcode. Though the computational prediction of fungal species has become feasible with the availability of huge volume of barcode sequences in public domain, prediction of fungal species is challenging due to high degree of variability among ITS regions within species. RESULTS: A Random Forest (RF)-based predictor was built for identification of unknown fungal species. The reference and query sequences were mapped onto numeric features based on gapped base pair compositions, and then used as training and test sets respectively for prediction of fungal species using RF. More than 85% accuracy was found when 4 sequences per species in the reference set were utilized; whereas it was seen to be stabilized at ~88% if ≥7 sequence per species in the reference set were used for training of the model. The proposed model achieved comparable accuracy, while evaluated against existing methods through cross-validation procedure. The proposed model also outperformed several existing models used for identification of different species other than fungi. CONCLUSIONS: An online prediction server "funbarRF" is established at http://cabgrid.res.in:8080/funbarrf/ for fungal species identification. Besides, an R-package funbarRF ( https://cran.r-project.org/web/packages/funbarRF/ ) is also available for prediction using high throughput sequence data. The effort put in this work will certainly supplement the future endeavors in the direction of fungal taxonomy assignments based on DNA barcode.


Subject(s)
Computational Biology/methods , DNA Barcoding, Taxonomic/methods , Fungi/classification , Fungi/genetics , Supervised Machine Learning , DNA, Fungal/genetics , Software
7.
Ann Pediatr Cardiol ; 4(2): 207-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21976891

ABSTRACT

A 2-month-old child was referred as a case of dilated cardiomyopathy with cardiogenic shock. On evaluation, hypocalcemia secondary to severe vitamin D deficiency was found. There were no clinical or radiological features of rickets. The child had developed multiorgan failure due to cardiogenic shock at the time of admission and could not be saved despite adequate ventilatory and pharmacologic support. Hypocalcemia should be considered as an important differential diagnosis in cases of dilated cardiomyopathy in infants.

SELECTION OF CITATIONS
SEARCH DETAIL