Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 142: 110209, 2021 04.
Article in English | MEDLINE | ID: mdl-33773684

ABSTRACT

Cagaita (Eugenia dysenterica DC) is an ellagitannin-containing Myrtaceae fruit from Cerrado biome. This fruit seems to be a promising candidate for an adjuvant in glucose regulation in healthy subjects. However, it is not known whether cagaita juice would have the same effect on dysglycemic subjects with metabolic syndrome (MetS). Therefore, the present work aimed to evaluate the effect of cagaita fruit juice on postprandial glycemia in dysglycemic subjects with MetS, and whether cagaita ellagitannins could be metabolized to urolithins. To evaluate glycemic effects, two different meals were consumed by volunteers (n = 12) with a 1-week interval among them. The first one consisted of white bread (50 g) plus water (300 mL) as a control; the second one, white bread (50 g) plus clarified cagaita juice (300 mL). Bioavailability was assessed in 24 h urine, after the consumption of a single amount of 300 mL of cagaita juice by healthy (n = 16) and MetS subjects (n = 7). The results showed that dysglycemic subjects with MetS presented a 53% reduction of incremental area under the curve (iAUC) of glucose, 38% reduction of insulin, 78% reduction of GIP (glucose-dependent insulinotropic polypeptide), and 58% reduction of C-peptide (p < 0.05), after the consumption of cagaita juice along with bread, in comparison to control water. However, both GLP-1 (glucagon-like peptide-1) and glucagon were not affected by cagaita juice ingestion. Concerning bioavailability, it was observed, for the first time, the metabolization of cagaita ellagitannins to urolithins by healthy and dysglycemic individuals with MetS, with a prevalence of metabotype B in both groups (44% and 42%, respectively), followed by metabotype A (37% and 29%, respectively), and metabotype 0 (19% and 29%, respectively).


Subject(s)
Eugenia , Metabolic Syndrome , Fruit and Vegetable Juices , Gastric Inhibitory Polypeptide , Humans , Postprandial Period
2.
Nutrients ; 13(2)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573276

ABSTRACT

Large interindividual variations in the biological response to citrus flavanones have been observed, and this could be associated with high variations in their bioavailability. The aim of this study was to identify the main determinants underlying interindividual differences in citrus flavanone metabolism and excretion. In a randomized cross-over study, non-obese and obese volunteers, aged 19-40 years, ingested single doses of Pera and Moro orange juices, and urine was collected for 24 h. A large difference in the recovery of the urinary flavanone phase II metabolites was observed, with hesperetin-sulfate and hesperetin-sulfo-O-glucuronide being the major metabolites. Subjects were stratified according to their total excretion of flavanone metabolites as high, medium, and low excretors, but the expected correlation with the microbiome was not observed at the genus level. A second stratification was proposed according to phase II flavanone metabolism, whereby participants were divided into two excretion groups: Profiles A and B. Profile B individuals showed greater biotransformation of hesperetin-sulfate to hesperetin-sulfo-O-glucuronide, as well as transformation of flavanone-monoglucuronide to the respective diglucuronides, suggestive of an influence of polymorphisms on UDP-glucuronosyltransferase. In conclusion, this study proposes a new stratification of volunteers based on their metabolic profiles. Gut microbiota composition and polymorphisms of phase II enzymes may be related to the interindividual variability of metabolism.


Subject(s)
Citrus sinensis , Flavanones/metabolism , Fruit and Vegetable Juices/analysis , Metabolome , Adult , Biological Variation, Individual , Citrus sinensis/chemistry , Cross-Over Studies , Flavanones/analysis , Flavanones/urine , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Young Adult
3.
J Agric Food Chem ; 61(11): 2720-8, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23431956

ABSTRACT

The ascorbic acid, flavonoids, and proanthocyanidins content and in vitro antioxidant activity of fresh pulps and seeds of cupuassu, harvested at three different times of the year, and in commercial frozen pulps were evaluated. Lipids, total phenolics contents, and antioxidant activities were the highest in the seeds, followed by fresh and commercial frozen pulps, respectively. The latter also showed a lower content of ascorbic acid (9-13 mg/100 g DW) when compared to fresh pulps (96-111 mg/100 g DW). The 8-O-ß-D-glucuronides and the corresponding 3″-sulfates of isoscutellarein (5,7,8,4'-tetrahydroxyflavone), hypolaetin (5,7,8,3',4'-pentahydroxyflavone), and 8-hydroxychrysoeriol (5,7,8,4'-tetrahydroxy-3'-methoxyflavone), also known as hypoaletin 3'-methyl ether, were identified and quantified (31 mg/g DW) in cupuassu seeds. The same flavonoid profile was present in pulps although in much lower concentrations (0.5 to 2 mg/g DW). The two 8-hydroxychrysoeriol glycosides had not been previously reported in cupuasssu. The content of proanthocyanidin oligomers in seeds (23 mg/g DW), mainly of the epicatechin type, and the mean degree of polymerization (5.5) were calculated. No discernible effect of the harvesting period on the evaluated chemical aspects could be identified. Commercial frozen pulps contained a smaller amount of all these compounds than the fresh pulp, suggesting that these compounds were potentially degraded during processing/storage.


Subject(s)
Antioxidants/analysis , Ascorbic Acid/analysis , Flavonoids/analysis , Fruit/chemistry , Malvaceae/chemistry , Plant Extracts/analysis , Proanthocyanidins/analysis , Seeds/chemistry
4.
J Agric Food Chem ; 58(24): 12678-85, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21090564

ABSTRACT

To select and establish floral biomarkers of the botanical origin of Diplotaxis tenuifolia honeys, the flavonoids and glucosinolates present in bee-deposited nectar collected from hive combs (unripe honey) and mature honey from the same hives fron which the unripe honey samples were collected were analyzed by LC-UV-PAD-ESI-MS(n). Glycosidic conjugates of the flavonols quercetin, kaempferol, and isorhamnetin were detected and characterized in unripe honey. D. tenuifolia mature honeys contained the aglycones kaempferol, quercetin, and isorhamnetin. The differences between the phenolic profiles of mature honey and freshly deposited honey could be due to hydrolytic enzymatic activities. Aliphatic and indole glucososinolates were analyzed in unripe and mature honeys, this being the first report of the detection and characterization of glucosinolates as honey constituents. Moreover, these honey samples contained different amounts of propolis-derived flavonoid aglycones (1765-3171 µg/100 g) and hydroxycinnamic acid derivatives (29-1514 µg/100 g). Propolis flavonoids were already present in the freshly deposited nectar, showing that the incorporation of these compounds to honey occurs at the early steps of honey production. The flavonoids quercetin, kaempferol, and isorhamnetin and the glucosinolates detected in the samples could be used as complementary biomarkers for the determination of the floral origin of Argentinean Diplotaxis honeys.


Subject(s)
Brassicaceae/chemistry , Flavonoids/analysis , Glucosinolates/analysis , Honey/analysis , Animals , Argentina , Bees , Biomarkers/analysis , Chromatography, High Pressure Liquid , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL