Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1270387, 2024.
Article in English | MEDLINE | ID: mdl-38348453

ABSTRACT

Preserving data privacy is an important concern in the research use of patient data. The DataSHIELD suite enables privacy-aware advanced statistical analysis in a federated setting. Despite its many applications, it has a few open practical issues: the complexity of hosting a federated infrastructure, the performance penalty imposed by the privacy-preserving constraints, and the ease of use by non-technical users. In this work, we describe a case study in which we review different breast cancer classifiers and report our findings about the limits and advantages of such non-disclosive suite of tools in a realistic setting. Five independent gene expression datasets of breast cancer survival were downloaded from Gene Expression Omnibus (GEO) and pooled together through the federated infrastructure. Three previously published and two newly proposed 5-year cancer-free survival risk score classifiers were trained in a federated environment, and an additional reference classifier was trained with unconstrained data access. The performance of these six classifiers was systematically evaluated, and the results show that i) the published classifiers do not generalize well when applied to patient cohorts that differ from those used to develop them; ii) among the methods we tried, the classification using logistic regression worked better on average, closely followed by random forest; iii) the unconstrained version of the logistic regression classifier outperformed the federated version by 4% on average. Reproducibility of our experiments is ensured through the use of VisualSHIELD, an open-source tool that augments DataSHIELD with new functions, a standardized deployment procedure, and a simple graphical user interface.

2.
Front Immunol ; 12: 738388, 2021.
Article in English | MEDLINE | ID: mdl-34557200

ABSTRACT

RNA vaccines represent a milestone in the history of vaccinology. They provide several advantages over more traditional approaches to vaccine development, showing strong immunogenicity and an overall favorable safety profile. While preclinical testing has provided some key insights on how RNA vaccines interact with the innate immune system, their mechanism of action appears to be fragmented amid the literature, making it difficult to formulate new hypotheses to be tested in clinical settings and ultimately improve this technology platform. Here, we propose a systems biology approach, based on the combination of literature mining and mechanistic graphical modeling, to consolidate existing knowledge around mRNA vaccines mode of action and enhance the translatability of preclinical hypotheses into clinical evidence. A Natural Language Processing (NLP) pipeline for automated knowledge extraction retrieved key biological evidences that were joined into an interactive mechanistic graphical model representing the chain of immune events induced by mRNA vaccines administration. The achieved mechanistic graphical model will help the design of future experiments, foster the generation of new hypotheses and set the basis for the development of mathematical models capable of simulating and predicting the immune response to mRNA vaccines.


Subject(s)
Computer Graphics , Data Mining , Models, Immunological , Natural Language Processing , Systems Biology , Translational Research, Biomedical , Vaccine Development , mRNA Vaccines/therapeutic use , Animals , Humans , Knowledge Bases , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology
3.
Front Cell Dev Biol ; 9: 703489, 2021.
Article in English | MEDLINE | ID: mdl-34490253

ABSTRACT

Lysosomal storage diseases (LSDs) are characterized by the abnormal accumulation of substrates in tissues due to the deficiency of lysosomal proteins. Among the numerous clinical manifestations, chronic inflammation has been consistently reported for several LSDs. However, the molecular mechanisms involved in the inflammatory response are still not completely understood. In this study, we performed text-mining and systems biology analyses to investigate the inflammatory signals in three LSDs characterized by sphingolipid accumulation: Gaucher disease, Acid Sphingomyelinase Deficiency (ASMD), and Fabry Disease. We first identified the cytokines linked to the LSDs, and then built on the extracted knowledge to investigate the inflammatory signals. We found numerous transcription factors that are putative regulators of cytokine expression in a cell-specific context, such as the signaling axes controlled by STAT2, JUN, and NR4A2 as candidate regulators of the monocyte Gaucher disease cytokine network. Overall, our results suggest the presence of a complex inflammatory signaling in LSDs involving many cellular and molecular players that could be further investigated as putative targets of anti-inflammatory therapies.

4.
Commun Biol ; 4(1): 1022, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471226

ABSTRACT

Mathematical models have grown in size and complexity becoming often computationally intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and qualification, these models may be run thousands of times. Scientific programming languages popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of performance. Here we show a compiler-based approach, designed to be universal at handling engineering and life sciences modeling styles, that automatically translates models into fast C code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arithmetic mean, our results show consistent superior performances.


Subject(s)
Computational Biology/instrumentation , Computer Simulation , Models, Biological , Programming Languages , Humans
5.
Bioinformatics ; 37(9): 1269-1277, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33225350

ABSTRACT

MOTIVATION: Precision medicine is a promising field that proposes, in contrast to a one-size-fits-all approach, the tailoring of medical decisions, treatments or products. In this context, it is crucial to introduce innovative methods to stratify a population of patients on the basis of an accurate system-level knowledge of the disease. This is particularly important in very challenging conditions, where the use of standard statistical methods can be prevented by poor data availability or by the need of oversimplifying the processes regulating a complex disease. RESULTS: We define an innovative method for phenotype classification that combines experimental data and a mathematical description of the disease biology. The methodology exploits the mathematical model for inferring additional subject features relevant for the classification. Finally, the algorithm identifies the optimal number of clusters and classifies the samples on the basis of a subset of the features estimated during the model fit. We tested the algorithm in two test cases: an in silico case in the context of dyslipidemia, a complex disease for which a large population of patients has been generated, and a clinical test case, in the context of a lysosomal rare disorder, for which the amount of available data was limited. In both the scenarios, our methodology proved to be accurate and robust, and allowed the inference of an additional phenotype division that the experimental data did not show. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the in silico results has been implemented in MATLAB v.2017b and it is available in the Supplementary Material. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Precision Medicine , Cluster Analysis , Computational Biology , Computer Simulation , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...