Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20900, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686714

ABSTRACT

Microplastics represent an important issue of concern for marine ecosystems worldwide, and closed seas, such as the Mediterranean, are among the most affected by this increasing threat. These pollutants accumulate in large quantities in benthic environments causing detrimental effects on diverse biocenoses. The main focus of this study is on the 'polychaetes-microplastics' interactions, particularly on two species of benthic polychaetes with different ecology and feeding strategies: the sessile and filter feeder Sabella spallanzanii (Gmelin, 1791) and the vagile carnivorous Hermodice carunculata (Pallas, 1766). Since not standardized protocols are proposed in literature to date, we compared efficiencies of diverse common procedures suitable for digesting organic matter of polychaetes. After the definition of an efficient digestion protocol for microplastics extraction for both polychaetes, our results showed high microplastics ingestion in both species. Microplastics were found in 42% of individuals of S. spallanzanii, with a mean of 1 (± 1.62) microplastics per individual, in almost all individuals of H. carunculata (93%), with a mean of 3.35 (± 2.60). These significant differences emerged between S. spallanzanii and H. carunculata, is probably due to the diverse feeding strategies. The susceptibility to this pollutant makes these species good bioindicators of the impact of microplastics on biota.

2.
Environ Pollut ; 230: 199-209, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28651091

ABSTRACT

Marine litter is any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment. Ingestion of marine litter can have lethal and sub-lethal effects on wildlife that accidentally ingests it, and sea turtles are particularly susceptible to this threat. The European Commission drafted the 2008/56/EC Marine Strategy Framework Directive with the aim to achieve a Good Environmental Status (GES), and the loggerhead sea turtle (Caretta caretta, Linnaeus 1758) was selected for monitoring the amount and composition of litter ingested by marine animals. An analogous decision has been made under the UNEP/MAP Barcelona Convention for the protection of the Mediterranean Sea, following the Ecosystem Approach. This work provides for the first time, two possible scenarios for the Marine Strategy Framework Directive GES, both related to "Trends in the amount and composition of litter ingested by marine animals" in the Mediterranean Sea. The study validates the use of the loggerhead turtle as target indicator for monitoring the impact of litter on marine biota and calls for immediate use of this protocol throughout the Mediterranean basin and European Region. Both GES scenarios are relevant worldwide, where sea turtles and marine litter are present, for measuring the impact of ingested plastics and developing policy strategies to reduce it. In the period between 2011 and 2014, 150 loggerhead sea turtles, found dead, were collected from the Italian Coast, West Mediterranean Sea Sub-Region. The presence of marine litter was investigated using a standardized protocol for necropsies and lab analysis. The collected items were subdivided into 4 main categories, namely, IND-Industrial plastic, USE-User plastic, RUB-Non plastic rubbish, POL-Pollutants and 14 sub-categories, to detect local diversity. Eighty-five percent of the individuals considered (n = 120) were found to have ingested an average of 1.3 ± 0.2 g of litter (dry mass) or 16 ± 3 items.


Subject(s)
Environmental Monitoring , Gastrointestinal Contents/chemistry , Turtles/physiology , Waste Products/analysis , Water Pollutants/analysis , Animals , Aquatic Organisms , Eating , Environment , Italy , Mediterranean Sea , Plastics , Water Pollution/statistics & numerical data
3.
Mar Pollut Bull ; 110(1): 212-220, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27321802

ABSTRACT

Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon environments.


Subject(s)
Biodiversity , Geologic Sediments , Invertebrates , Seaweed , Animals , Biomass , Ecosystem , Environmental Monitoring/methods , Eutrophication , Italy , Mediterranean Sea , Ships
5.
Mar Pollut Bull ; 58(4): 533-41, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19128812

ABSTRACT

The effects of solid organic wastes from a marine fish farm on sediment was tested using macrobenthic fauna as biological indicators. Impact on benthic fauna was evaluated in the vicinity of a fish farm in the Tyrrhenian Sea (Western Mediterranean) between July 2001 and October 2002. Changes in benthic community structure were investigated using multivariate, distributional and univariate analyses (diversity indices, AMBI and M-AMBI). The results showed sharp disturbance of assemblages under the cages and no effects in the area more than 25 m from the cages. Sediment alterations were related to an increase in farmed biomass and its wastes, as well as to low current speed that allowed accumulation of organic matter on the sea floor. It was possible to follow the ecological succession from slightly altered assemblages to heavily polluted ones in the very short period of a single fish fattening cycle (15 months).


Subject(s)
Biodiversity , Environmental Monitoring , Fisheries , Invertebrates/physiology , Animals , Mediterranean Sea , Population Density , Seawater/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...