Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Anim Reprod Sci ; 243: 107033, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35816934

ABSTRACT

Metabolic stress conditions caused by negative energy balance (NEB) have been associated with reduced fertility in cows. ß-hydroxybutyrate (BHBA) is the main circulating ketone body, which accumulates within follicular fluid. The aim of this study was to evaluate the effects of BHBA on follicle growth and on ovulatory mechanisms in cattle. At 72 h after intrafollicular injection, there was a decrease in follicular diameter in BHBA group compared to control (P = 0.02). Furthermore, follicle growth rate was reduced post-treatment with BHBA in comparison to the control group (P < 0.03). The BHBA intrafollicular injection in follicles ≥ 12 mm, however, did not affect E2 and P4 concentrations in the follicular fluid. In addition, the relative abundance of genes involved in the ovulatory cascade (ADAM 17, AREG, EREG, PTGS2), steroidogenesis (CYP19A1, 3BHSD, STAR), cellular stress (SOD1, CAT, GPX1, HSPA5, XBP1s, XBP1u, ATF4, ATF6), monocarboxylic acid transporters (SLC16A1, SLC16A7) and apoptosis (XIAP) was similar between groups. In conclusion, the results of this study indicate that the increase in intrafollicular concentrations of BHBA affects follicular growth, but it does not compromise the ovulatory cascade and cellular homeostasis in bovine granulosa cells.


Subject(s)
Granulosa Cells , Ovarian Follicle , 3-Hydroxybutyric Acid/metabolism , Animals , Cattle , Female , Fertility , Follicular Fluid , Granulosa Cells/metabolism
2.
Theriogenology ; 171: 30-37, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34004368

ABSTRACT

Although prostaglandins are important in the ovulation process, a precise role for prostaglandin F2α (PGF) has not been elucidated. This study aimed to evaluate the regulation of PGF receptor mRNA (PTGFR) in granulosa cells and the local effect of PGF on ovulation and luteinization. In Experiment 1, using samples collected in vivo before (Day 2), during (Day 3) and after (Day 4) follicular deviation, expression of PTGFR in bovine granulosa cells was more abundant in the dominant follicle after deviation than in subordinates (P < 0.05). However, the expression of PTGFR was not regulated (P = 0.1) in preovulatory follicles at different time-points (0, 3, 6, 12 and 24 h) after ovulation induction with GnRH. In Experiment 2, to assess the role of systemic PGF treatment on luteinization and vascularization of preovulatory follicles, flunixin meglumine (FM), a nonsteroidal anti-inflammatory drug, was used to inhibit endogenous prostaglandin synthesis. Cows with preovulatory follicles were induced to ovulate with GnRH (0 h) and allocated to three groups: Control, with no further treatment; FM, treated with 2.2 mg/kg FM im 17 h after GnRH treatment; and FM + PGF, treated with FM 17 h after GnRH, followed by 25 mg dinoprost tromethamine (PGF) 23 h after GnRH treatment. FM injection was able to reduce the concentration of PGF in the follicular fluid (FF) (P < 0.001). However, contrary to our hypothesis, color Doppler ultrasound evaluations revealed decreased vascular flow in FM + PGF group (P < 0.05), and no effect of the treatments on intrafollicular P4 and E2 concentrations 24 h after GnRH. The prostaglandin metabolite (PGFM) concentrations in the FF were greater in cows receiving systemic PGF (P < 0.001), which prompted us to further check its role on ovulation. Therefore, in Experiment 3, in a final attempt to demonstrate the local effect of PGF on ovulation, cows with preovulatory follicles received an intrafollicular injection (IFI) of PBS (Control) or 100 ng/mL purified PGF (PGF group). PGF treatment did not affect the time of ovulation after IFI (66 ± 6.4 and 63 ± 8.5 h for control and PGF, respectively; P > 0.05), further suggesting that it has no direct effect in the ovulatory process. Based on our findings, we concluded that FM decreased PGF synthesis within the follicle, whereas PGF treatment decreased follicular vascularization. In addition, the in vivo model of intrafollicular injection evidenced that PGF alone is not able to locally induce ovulation.


Subject(s)
Dinoprost , Progesterone , Animals , Cattle , Dinoprost/pharmacology , Female , Gonadotropin-Releasing Hormone/pharmacology , Luteinization , Ovarian Follicle , Ovulation
3.
Reprod Domest Anim ; 54(3): 445-455, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30417448

ABSTRACT

High-density lipoprotein (HDL) is the main lipoprotein in the follicular fluid, and it has anti-inflammatory, antioxidant and cryoprotectant properties. The anti-inflammatory potential and antioxidant potential are derived from its lipid composition, especially the apolipoprotein AI (ApoAI) and paraoxonase 1 (PON1). The aim of this study was to evaluate the effect of HDL during in vitro maturation (IVM) on oocyte maturation and early bovine embryo development. For this, cumulus-oocyte complexes (COCs) were obtained from bovine ovaries collected at a local slaughterhouse. COCs (n = 2,250) were allocated into three groups (n = 50 COCs/group) according to the addition of HDL protein (HDL-P) during IVM for 22 hr: 0 (control), 50 and 150 mg/dl. After IVM, COCs were inseminated (in vitro fertilization) and cultivated for 7 days. Total cholesterol concentration, total protein, triglycerides and ApoAI concentrations on IVM medium increased proportionally to HDL-P addition. However, PON1 activity was not detected in any treatment. The addition of HDL-P did not affect nuclear maturation rate, endogenous reactive oxygen species and glutathione levels in COCs (p > 0.05). The highest HDL-P concentration (150 mg/dl) decreased cleavage and blastocyst rate (p < 0.05). Moreover, the HDL-P 150 mg/dl group had lower cellular count/blastocyst than the 50 mg/dl group (p < 0.05). However, the addition of HDL-P did not affect relative gene expression of evaluated genes. In conclusion, the complex HDL/ApoAI obtained from human plasma, in the absence of PON1 activity during in vitro oocyte maturation, decreased initial embryo development.


Subject(s)
Blastocyst/physiology , Embryo Culture Techniques/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Lipoproteins, HDL/pharmacology , Oocytes/growth & development , Animals , Apolipoprotein A-I/pharmacology , Aryldialkylphosphatase/pharmacology , Cattle , Cumulus Cells/drug effects , Female , Fertilization in Vitro/veterinary , Gene Expression , Humans , Oogenesis
SELECTION OF CITATIONS
SEARCH DETAIL