Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107296

ABSTRACT

Mitochondrial inner membrane protein (Mitofilin/Mic60) is part of a big complex that constituent the mitochondrial inner membrane organizing system (MINOS), which plays a critical role in maintaining mitochondrial architecture and function. We recently showed that Mitofilin physically binds to Cyclophilin D, and disruption of this interaction promotes the opening of mitochondrial permeability transition pore (mPTP) and determines the extent of I/R injury. Here, we investigated whether Mitofilin knockout in the mouse enhances myocardial injury and inflammation after I/R injury. We found that full-body deletion (homozygote) of Mitofilin induces a lethal effect in the offspring and that a single allele expression of Mitofilin is sufficient to rescue the mouse phenotype in normal conditions. Using non-ischemic hearts from wild-type (WT) and Mitofilin+/- (HET) mice, we report that the mitochondria structure and calcium retention capacity (CRC) required to induce the opening of mPTP were similar in both groups. However, the levels of mitochondrial dynamics proteins involved in both fusion/fission, including MFN2, DRP1, and OPA1, were slightly reduced in Mitofilin+/- mice compared to WT. After I/R, the CRC and cardiac functional recovery were reduced while the mitochondria structure was more damaged, and myocardial infarct size was increased in Mitofilin+/- mice compared to WT. Mitofilin+/- mice exhibited an increase in the mtDNA release in the cytosol and ROS production, as well as dysregulated SLC25As (3, 5, 11, and 22) solute carrier function, compared to WT. In addition, Mitofilin+/- mice displayed an increase in the transcript of pro-inflammatory markers, including IL-6, ICAM, and TNF-α. These results suggest that Mitofilin knockdown induces mitochondrial cristae damage that promotes dysregulation of SLC25As solute carriers, leading to an increase in ROS production and reduction in CRC after I/R. These effects are associated with an increase in the mtDNA release into the cytosol, where it activates signaling cascades leading to nuclear transcription of pro-inflammatory cytokines that aggravate I/R injury.

2.
Cells ; 11(12)2022 06 11.
Article in English | MEDLINE | ID: mdl-35741025

ABSTRACT

The receptor-interacting protein kinase 3 (RIP3) has been reported to regulate programmed necrosis-necroptosis forms of cell death with important functions in inflammation. We investigated whether RIP3 translocates into mitochondria in response to renal ischemia-reperfusion (I/R) to interact with inner mitochondrial protein (Mitofilin) and promote mtDNA release into the cytosol. We found that release of mtDNA activates the cGAS-STING pathway, leading to increased nuclear transcription of pro-inflammatory markers that exacerbate renal I/R injury. Monolateral C57/6N and RIP3-/- mice kidneys were subjected to 60 min of ischemia followed by either 12, 24, or 48 h of reperfusion. In WT mice, we found that renal I/R injury increased RIP3 levels, as well as its translocation into mitochondria. We observed that RIP3 interacts with Mitofilin, likely promoting its degradation, resulting in increased mitochondria damage and mtDNA release, activation of the cGAS-STING-p65 pathway, and increased transcription of pro-inflammatory markers. All of these effects observed in WT mice were decreased in RIP3-/- mice. In HK-2, RIP3 overexpression or Mitofilin knockdown increased cell death by activating the cGAS-STING-p65 pathway. Together, this study point to an important role of the RIP3-Mitofilin axis in the initiation and development of renal I/R injury.


Subject(s)
Mitochondria , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammation/metabolism , Ischemia/metabolism , Kidney/metabolism , Mice , Mitochondria/metabolism , Nucleotidyltransferases/metabolism , Reperfusion , Reperfusion Injury/metabolism
3.
Am J Transl Res ; 12(11): 7542-7564, 2020.
Article in English | MEDLINE | ID: mdl-33312388

ABSTRACT

Mitochondrial dysfunction plays a critical role in the pathophysiology of Parkinson's disease (PD). The inner mitochondrial membrane (IMM) protein, Mitofilin or Mic60, has been shown to play a key role in controlling and maintaining mitochondrial cristae morphology, and its dysregulation induces cyto-deleterious effects. Here, we investigated the mechanism underlying Mitofilin degradation in dopaminergic neuron death using N27-A cells, and Human Dopamine Neuronal Primary cells treated with PD stressors, Dopamine (DA) or Rotenone (Rot). We found that both PD stressors increased mitochondrial Parkin translocation and interaction with Mitofilin that promotes Mitofilin degradation via ubiquitination, which is responsible for reduced mitochondrial membrane potential and increased ROS production. These effects were concomitant with abnormal mitochondrial structure and increased neuronal death. DA-induced degradation of Mitofilin enhances mitochondrial calpain activity, increases the release of AIF into the cytosol, and promotes apoptosis via an AIF-PARP dependent mechanism. We found that Rot-treated cells exhibit excessive mitophagy, while DA does not trigger mitophagy. In addition, overexpressing USP30, a mitochondrial deubiquitinase, attenuated cell death induced by Rot, but not by DA-treated cells. Together, our study reveals the impact of Parkin-Mitofilin interaction in PD stressor-induced neurotoxicity, which leads to the degradation of Mitofilin, resulting in mitochondrial structural damage and dysfunction that is responsible for neuronal death by apoptosis via an AIF-PARP pathway.

4.
Front Endocrinol (Lausanne) ; 11: 579161, 2020.
Article in English | MEDLINE | ID: mdl-33193095

ABSTRACT

Introduction: Estrogen (17ß-estradiol, E2) is well-known to induce cardioprotective effects against ischemia/reperfusion (I/R) injury. We recently reported that acute application of E2 at the onset of reperfusion in vivo induces cardioprotective effects against I/R injury via activation of its non-steroidal receptor, G protein-coupled estrogen receptor 1 (GPER1). Here, we investigated the impact and mechanism underlying chronic GPER1 activation in cultured H9c2 rat cardiomyoblasts. Methods: H9c2 rat cardiomyoblasts were cultured and pretreated with the cytotoxic agent H2O2 for 24 h and incubated in the presence of vehicle (control), GPER1 agonists E2 and G1, or GPER1 agonists supplemented with G15 (GPER1 antagonist) for 48 or 96 h. After treatment, cells were collected to measure the rate of cell death and viability using flow cytometry and Calcein AM assay or MTT assay, respectively. The resistance to opening of the mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential, and ATP production was assessed using fluorescence microscopy, and the mitochondrial structural integrity was observed with electron microscopy. The levels of the phosphorylation of mammalian sterile-20-like kinase (MST1) and yes-associated protein (YAP) were assessed by Western blot analysis in whole-cell lysate, while the expression levels of mitochondrial biogenesis genes, YAP target genes, and proapoptotic genes were measured by qRT-PCR. Results: We found that after H2O2 treatment, chronic E2/G1 treatment decreased cell death effect was associated with the prevention of the S phase of the cell cycle arrest compared to control. In the mitochondria, chronic E2/G1 activation treatment preserved the cristae morphology, and increased resistance to opening of mPTP, but with little change to mitochondrial fusion/fission. Additionally, chronic E2/G1 treatment predominantly reduced phosphorylation of MST1 and YAP, as well as increased MST1 and YAP protein levels. E2 treatment also upregulated the expression levels of TGF-ß and PGC-1α mRNAs and downregulated PUMA and Bim mRNAs. Except for ATP production, all the E2 or G1 effects were prevented by the cotreatment with the GPER1 antagonist, G15. Conclusion: Together, these results indicate that chronic GPER1 activation with its agonists E2 or G1 treatment protects H9c2 cardiomyoblasts against oxidative stress-induced cell death and increases cell viability by preserving mitochondrial structure and function as well as delaying the opening of mPTP. These chronic GPER1 effects are associated with the deactivation of the non-canonical MST1/YAP mechanism that leads to genetic upregulation of cell growth genes (CTGF, CYR61, PGC-1α, and ANKRD1), and downregulation of proapoptotic genes (PUMA and Bim).


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Reperfusion Injury/prevention & control , Animals , Male , Mitochondria/pathology , Myocytes, Cardiac/pathology , Protective Agents/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Serine-Threonine Kinase 3 , YAP-Signaling Proteins
5.
Am J Transl Res ; 12(7): 3412-3428, 2020.
Article in English | MEDLINE | ID: mdl-32774709

ABSTRACT

MPV17 is an inner mitochondrial membrane protein whose mutation results in mitochondrial DNA (mtDNA) depletion diseases such as neurohepatopathy. MPV17 is expressed in several organs including the liver and kidneys. Here, we investigated its role and mechanism of action in cardiac ischemia/reperfusion (I/R) injury. Using isolated hearts from wild type and Mpv17 mutant (Mpv17mut) mice, we found that mtDNA levels and normal cardiac function were similar between the groups. Furthermore, reactive oxygen species (ROS) generation, mitochondrial morphology, and calcium levels required to trigger mitochondrial permeability transition pore (mPTP) opening were all similar in normal/non-ischemic animals. However, following I/R, we found that mutant mice had poorer cardiac functional recovery and exhibited more mitochondrial structural damage. We also found that after I/R, Mpv17mut heart mitochondria did not produce more ROS than wild type hearts but that calcium retention capacity was gravely compromised. Using immunoprecipitation and mass spectrometry, we identified ATP synthase, Cyclophilin D, MIC60 and GRP75 as proteins critical to mitochondrial cristae organization and calcium handling that interact with MPV17, and this interaction is reduced by I/R. Together our results suggest that MPV17 has a protective function in the heart and is necessary for recovery following insults to the heart.

6.
Free Radic Biol Med ; 158: 181-194, 2020 10.
Article in English | MEDLINE | ID: mdl-32726689

ABSTRACT

Mitochondrial inner membrane protein (Mitofilin or Mic60) is a mitochondria-shaping protein that plays a key role in maintaining mitochondrial cristae structure and remodeling. We recently showed that Mitofilin knockdown in H9c2 myoblasts induces mitochondrial structural damage resulting in mitochondrial dysfunction that is responsible for cell death via apoptosis. Here, we investigated the role of Mitofilin regulation in ischemia/reperfusion (I/R) injury and studied the relationship between Mitofilin and Cyclophilin (CypD), a key regulator of mitochondrial permeability transition pore (mPTP) opening. C57Bl6 male mice hearts were subjected to different ischemia times (15, 30, or 45 min) followed by a 2 h reperfusion period, or 45 min ischemia followed by 0, 15, 30, 60, or 120 min reperfusion to determine the impact of ischemia or reperfusion times on Mitofilin levels and its interaction with CypD. We found that the increase in myocardial infarct size and the reduction of mitochondrial calcium retention capacity were concomitant with Mitofilin reduction as a function of ischemic duration. We also found that 15 min reperfusion after 45 min ischemia was sufficient to cause a reduction of Mitofilin levels compared to sham, while 45 min ischemia alone was not enough to cause a significant decrease of Mitofilin. We revealed that the c-terminus coiled-coiled domain of Mitofilin is important for its interaction with CypD and the deletion of this identified sequence resulted in a loss of Mitofilin-CypD link, dissipation of mitochondrial membrane potential and increase in cell death. A decrease of the levels of Mitofilin was also associated with mitochondrial structural integrity damage, increased reactive oxygen species (ROS) production, and calpain activity. Our results indicate that Mitofilin physically binds to CypD in the inner mitochondrial membrane and the disruption of this interaction may play a critical role in the increase of mitochondrial dysfunction and initiation of myocytes' death after I/R injury.


Subject(s)
Mitochondrial Membranes , Myocardial Reperfusion Injury , Animals , Ischemia/metabolism , Male , Membrane Proteins/metabolism , Mice , Mitochondria , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Reperfusion
7.
Biochem Biophys Res Commun ; 520(3): 606-611, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31623831

ABSTRACT

Ferroptosis is a distinct iron-dependent mechanism of regulated cell death recognized in cancer and ischemia/reperfusion (I/R) injury of different organs. It has been reported that molecules such as liproxstatin-1 (Lip-1) inhibit ferroptosis and promote cell survival however, the mechanisms underlying this action are not clearly understood. We investigated the role and mechanism of Lip-1 in reducing cell death in the ischemic myocardium. Using an I/R model of isolated perfused mice hearts in which Lip-1 was given at the onset of reperfusion, we found that Lip-1 protects the heart by reducing myocardial infarct sizes and maintaining mitochondrial structural integrity and function. Further investigation revealed that Lip-1-induced cardioprotection is mediated by a reduction of VDAC1 levels and oligomerization, but not VDAC2/3. Lip-1 treatment also decreased mitochondrial reactive oxygen species production and rescued the reduction of the antioxidant GPX4 caused by I/R stress. Meanwhile, mitochondrial Ca2+ retention capacity needed to induce mitochondrial permeability transition pore opening did not change with Lip-1 treatment. Thus, we report that Lip-1 induces cardioprotective effects against I/R injury by reducing VDAC1 levels and restoring GPX4 levels.


Subject(s)
Cardiotonic Agents/pharmacology , Heart/drug effects , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Quinoxalines/pharmacology , Spiro Compounds/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Animals , Antioxidants/metabolism , Calcium/metabolism , Ferroptosis/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channels/metabolism
8.
Am J Physiol Cell Physiol ; 315(1): C28-C43, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29489384

ABSTRACT

Mitofilin is an inner membrane protein that has been defined as a mitochondria-shaping protein in controlling and maintaining mitochondrial cristae structure and remodeling. We determined the role of mitofilin in cell survival by investigating the mechanism underlying mitofilin knockdown-induced cell death by apoptosis. Cultured H9c2 myoblasts and HEK 293 cells were treated with mitofilin siRNA or scrambled siRNA for 24 h. Cell death (apoptosis), caspase 3 activity and cell cycle phases were assessed by flow cytometry, while cytochrome c release and intracellular ATP production were measured by ELISA. Mitofilin, apoptosis-inducing factor (AIF) and poly(ADP-ribose) polymerase (PARP) expression were measured by Western blot analysis and calpain activity was assessed using a calpain activity kit. Mitochondrial images were taken using electron microscopy. We found that mitofilin knockdown increases apoptosis mainly via activation of the AIF-PARP pathway leading to nuclear fragmentation that is correlated with S phase arrest of the cell cycle. Knockdown of mitofilin also led to mitochondrial swelling and damage of cristae that is associated with the increase in reactive oxygen species production and mitochondrial calpain activity, as well as a marked decrease in intracellular ATP production and mitochondrial membrane potential. Together, these results indicate that mitofilin knockdown by siRNA increases calpain activity that presumably leads to mitochondrial structural degradation resulting in a critical reduction of mitochondrial function that is responsible for the increase in cell death by apoptosis via an AIF-PARP mechanism and associated with nuclear fragmentation, and S phase arrest of the cell cycle.


Subject(s)
Apoptosis Inducing Factor/metabolism , Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Cell Death/physiology , Mitochondrial Proteins/metabolism , Muscle Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Animals , Cell Line , Cytochromes c/metabolism , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Myoblasts/metabolism , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , S Phase/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...