Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 210: 108616, 2024 May.
Article in English | MEDLINE | ID: mdl-38615444

ABSTRACT

This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.


Subject(s)
Photosynthesis , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Magnetic Iron Oxide Nanoparticles , Chlorophyll/metabolism , Minerals/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Ferric Compounds
2.
Environ Sci Pollut Res Int ; 31(14): 22171-22186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38403831

ABSTRACT

Root-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.


Subject(s)
Hordeum , Hordeum/metabolism , Particle Size , Bioaccumulation , Hydrogen Peroxide/metabolism , Seedlings , Magnetic Iron Oxide Nanoparticles
3.
Funct Integr Genomics ; 24(1): 16, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38242999

ABSTRACT

This study investigates the performance of reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the colorimetric detection of SARS-CoV-2 using fluorometric dye, namely, calcein. The detection limit (LoD) with the N-ID1 primer set resulted in superior performance, corresponding to ~ 2 copies/reaction or ~ 0.1 copies/µL of the RNA sample. The color development can be observed by the naked eye, using an ultraviolet (UV) transilluminator or a hand-UV light without the requirement of expensive devices. The average time-to-reaction (TTR) value was 26.2 min in high-copy number samples, while it was about 50 min in rRT-PCR. A mobile application was proposed to quantify the positive and negative results based on the three-color spaces (RGB, Lab, and HSB). Compared to rRT-PCR (n = 67), this assay allows fast and sensitive visual detection of SARS-CoV-2, with high sensitivity (90.9%), selectivity (100%), and accuracy (94.03%). Besides, the assay was sensitive regardless of variants. Since this assay uses a fluorescent dye for visual observation, it can be easily adapted in RT-LAMP assays with high sensitivity. Thus, it can be utilized in low-source centers and field testing such as conferences, sports meetings, refugee camps, companies, and schools.


Subject(s)
COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Sensitivity and Specificity , Hydrogen-Ion Concentration , RNA, Viral/genetics
4.
J Infect Public Health ; 16(4): 531-541, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801633

ABSTRACT

Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the Poxviridae family of the genus Orthopoxvirus with two different clades known as West African and Congo Basin. Monkeypox (MPX) is a zoonosis that arises from the MPXV and causes a smallpox-like disease. The endemic disease status of MPX was updated to an outbreak worldwide in 2022. Thus, the condition was declared a global health emergency independent of travel issues, accounting for the primary reason for its prevalence outside Africa. In addition to identified transmission mediators through animal-to-human and human-to-human, especially sexual transmission among men who have sex with men came to prominence in the 2022 global outbreak. Although the severity and prevalence of the disease differ depending on age and gender, some symptoms are commonly observed. Clinical signs such as fever, muscle and headache pain, swollen lymph nodes, and skin rashes in defined body regions are standard and an indicator for the first step of diagnosis. By following the clinical signs, laboratory diagnostic tests like conventional polymerase chain reaction (PCR) or real-time PCR (RT-PCR) are the most common and accurate diagnostic methods. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir are used for symptomatic treatment. There is no MPXV-specific vaccine; however, currently available vaccines against smallpox enhance the immunization rate. This comprehensive review covers the MPX disease history and the current state of knowledge by assessing broad topics and views related to disease origin, transmission, epidemiology, severity, genome organization and evolution, diagnosis, treatment, and prevention.


Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Smallpox , Male , Animals , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/drug therapy , Mpox (monkeypox)/epidemiology , Antiviral Agents/therapeutic use , Homosexuality, Male
5.
Environ Sci Pollut Res Int ; 29(3): 4710-4721, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34414536

ABSTRACT

The increasing demand for food in the world has made sustainable agriculture practices even more important. Nanotechnology applications in many areas have also been used in sustainable agriculture in recent years for the purposes to improve plant yield, pest control, etc. However, ecotoxicology and environmental safety of nanoparticles must be evaluated before large-scale applications. This study comparatively explores the efficacy and fate of different iron oxide NPs (γ-Fe2O3-maghemite and Fe3O4-magnetite) on barley (Hordeum vulgare L.). Various NP doses (50, 100, and 200 mg/L) were applied to the seeds in hydroponic medium for 3 weeks. Results revealed that γ-Fe2O3 and Fe3O4 NPs significantly improved the germination rate (~37% for γ-Fe2O3; ~63% for Fe3O4), plant biomass, and pigmentation (P < 0.005). Compared to the control, the iron content of tissues gradually raised by the increasing NPs doses revealing their translocation, which is confirmed by VSM analysis as well. The findings suggest that γ-Fe2O3 and Fe3O4 NPs have great potential to improve barley growth. They can be recommended for breeding programs as nanofertilizers. However, special care should be paid before the application due to their unknown effects on other living beings.


Subject(s)
Hordeum , Magnetite Nanoparticles , Nanoparticles , Ferric Compounds , Ferrosoferric Oxide , Plant Roots
6.
Crit Rev Oncol Hematol ; 157: 103196, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33307198

ABSTRACT

The objective of this review is to elucidate the role of miRNAs in triple negative breast cancer (TNBC). To achieve our goal, we searched databases such as PubMed, ScienceDirect, Springer, Web of Science and Scopus. We retrieved up to 1233 articles, based a rigorous selection criterion, only 197 articles were extensively reviewed. We selected articles only addressing TNBC, but not other types of breast cancer, with the employed approach being miRNA analysis and/or profiling. Our extensive review resulted in grouping of miRNAs into categories in which specific members of miRNAs have roles in specific mechanism in TNBC i.e., carcinogenesis, invasion, metastasis, apoptosis, diagnosis, prognosis, and treatment. TNBC is an aggressive subtype of breast cancer; therefore, different approaches for accurate diagnosis, prognosis and treatment are needed. In this review we summarize the up-to-date miRNA profiling, prognostic, and therapeutic findings that add to the route of controlling TNBC.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Apoptosis , Biomarkers, Tumor/genetics , Carcinogenesis , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Prognosis , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics
7.
Chemosphere ; 265: 129138, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33279234

ABSTRACT

Cobalt ferrite nanoparticles (CoFe2O4 NPs) have received increasing attention in a widespread application. This work examines the fate and impact of terbium (Tb) substituted CoFe2O4 NPs on the growth, physiological indices, and magnetic character of barley (Hordeum vulgare L.). Sonochemically synthesized NPs were hydroponically applied on barley with changing doses (125-1000 mg/L) at germination and seedling (three weeks) stages. Results revealed a significant reduction in germination rate (∼37% at 1000 mg/L); however, a remarkable growth (∼38-65%) and biomass (∼72-133%) increase were detected at three weeks of exposure (p < 0.05). The elements that make up the NPs (i.e., Tb, Co, and Fe) increased significantly in both root and leaf tissues, indicating the translocation of NPs from the root to leaf. Vibrating-sample magnetometer (VSM) analysis confirmed this finding, where magnetic signals in the root and leaf samples of the control were respectively about 26 and 75 times lower than that of NPs-treated tissues. Also, the accumulation of NPs altered the leaf photoluminescence (PL) behavior, which may have contributed to the biomass increase. Overall, Tb-doped CoFe2O4 NPs translocate from root-to-leaf and enhance plant growth, possibly due to i) incorporation of iron within tissues, and ii) changes in photoluminescence. However, since its effects on other living things are not known yet, its agricultural use and release to nature should be considered well.


Subject(s)
Hordeum , Nanoparticles , Cobalt , Ferric Compounds , Plant Roots
8.
Environ Pollut ; 266(Pt 1): 115391, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32823044

ABSTRACT

There has been a growing concern with the environmental influences of nanomaterials due to recent developments in nanotechnology. This study investigates the impact and fate of hematite nanoparticles (α-Fe2O3 NPs) (∼14 nm in size) on a crop species, barley (Hordeum vulgare L.). For this purpose, hematite NPs (50, 100, 200, and 400 mg/L) were hydroponically applied to barley at germination and seedling stages (three weeks). Inductively coupled plasma mass spectrophotometry (ICP-MS) along with vibrating sample magnetometer (VSM) techniques were used to track the NPs in plant tissues. The effects of NPs on the root cells were observed by scanning electron microscopy (SEM) and confocal microscopy. Results revealed that α-Fe2O3 NPs significantly reduced the germination rate (from 80% in control to 30% in 400 mg/L), as well as chlorophyll (36-39%) and carotenoid (37%) contents. Moreover, the treatment led to a significant decline in the quantum yield of photosystem II (Fv/Fm). Leaf VSM analysis indicated a change in magnetic signal for NPs-treated samples compared with untreated ones, which is mostly attributed to the iron (Fe) ions incorporated within the leaf tissue. Besides, Fe content in the roots and leaf had gradually increased by the increasing doses of NPs, which was confirming NPs' translocation to the aerial parts. Microscopic observations revealed that α-Fe2O3 NPs altered root cell morphology and led to the injury of cell membranes. This study, in the light of our findings, shows that α-Fe2O3 NPs (∼14 nm in size) are taken up by the roots of the barley plants, and migrate to the plant leaves. Besides, NPs are phytotoxic for barley as they inhibit germination and pigment biosynthesis. This inhibition is probably due to the injury of the cell membranes in the roots. Therefore, the use of hematite NPs in agriculture and thereby their environmental diffusion must be addressed carefully.


Subject(s)
Hordeum , Nanoparticles , Ferric Compounds , Plant Roots
9.
Environ Sci Pollut Res Int ; 27(27): 34311-34321, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32542569

ABSTRACT

This study investigates the impact of an engineered magnetic nanoparticle (MNP) on a crop plant. For this purpose, a sonochemical synthetic approach was utilized in order to dope magnetic elements (Co and Nd) into technologically important iron oxide NPs. After being characterized by using TEM, SEM, and XRD instruments, the MNPs were hydroponically applied to barley plants with varying doses (from 125 to 1000 mg/L) both in germination (4 days) and early growing stages (3 weeks). Physiological responses, as well as expression of photosystem marker genes, were assessed. Compared to the untreated control, MNP treatment enhanced germination rate (~ 31%), tissue growth (8% in roots, 16% in shoots), biomass (~ 21%), and chlorophyll (a, b) (~ 20%), and carotenoids (~ 22%) pigments. In general, plants showed the highest growth enhancement at 125 or 250 mg/L treatment. However, higher doses diminished the growth indices. Compared to the control, the catalase activity was significantly reduced in the leaves (~ 33%, p < 0.005) but stimulated in the roots (~ 46%, p < 0.005). All tested photosystem marker genes (BCA, psbA, and psaA) were overexpressed in MNP-treated leaves than non-treated control. Moreover, the gene expressions were found to be proportionally increased with increasing MNP doses, indicating a positive correlation between MNPs and the photosynthetic machinery, which could contribute to the enhancement of plant growth.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Chlorophyll , Hordeum , Magnetics , Plant Leaves , Plant Roots
10.
Ecotoxicol Environ Saf ; 186: 109751, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31600650

ABSTRACT

In this study, calcium and magnesium substituted strontium nano-hexaferrites (Sr0.96Mg0.02Ca0.02Fe12O19, SrMgCa nano-HF) were synthesized by the sol-gel auto-combustion method and their impact on the nutrient uptake, magnetic character and physiology of barley (Hordeum vulgare L.), a crop plant, was investigated. Structural, microstructural, and magnetic properties of nano-HF were evaluated by using vibrating sample magnetometry (VSM), X-ray diffraction (XRD), scanning electron microscopy (SEM) along with energy-dispersive X-ray (EDX) and elemental mapping techniques. Plants were hydroponically exposed to nano-HF (ranging from 125 to 1000 mg/L) for three weeks. Results showed that the SrMgCa nano-HF application enhanced germination rate (about 20%), tissue growth (about 38%), biomass (about 20%), soluble protein content (about 41%), and chlorophyll pigments (about 33-42%) when compared to the untreated control. In general, the plants showed the highest growth achievement at 125 or 250 mg/L of nano-HF treatment. However, higher doses diminished the growth parameters. Element concentrations and magnetic behavior analyses of plant parts proved that SrMgCa nano-HF with a size of 42.4 nm are up-taken by the plant roots and lead to increase in iron, calcium, magnesium, and strontium contents of leaves, which were about 20, 18, 3, and 60 times higher in 500 mg/L nano-HF-treated leaves than those of control, respectively. Overall, this study shows for the first time that the four elements have been internalized into the plant body through the application of substituted nano-HF. These findings suggest that mineral-substituted nanoparticles can be incorporated into plant breeding programs for the i) enhancement of seed germination and ii) treatment of plants by fighting with mineral deficiencies.


Subject(s)
Calcium/pharmacology , Ferric Compounds/pharmacology , Hordeum/drug effects , Magnesium/pharmacology , Magnetic Phenomena , Nanoparticles , Strontium/pharmacology , Biological Transport , Biomass , Calcium/metabolism , Chlorophyll/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Crops, Agricultural/physiology , Ferric Compounds/metabolism , Germination/drug effects , Hordeum/growth & development , Hordeum/metabolism , Hydroponics , Iron/metabolism , Iron/pharmacology , Magnesium/metabolism , Minerals/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Strontium/metabolism
11.
Chemosphere ; 226: 110-122, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30925403

ABSTRACT

This study investigates the fate and impact of iron oxide or magnetite (Fe3O4, ∼13 nm in size) nanoparticles (NPs) in barley (Hordeum vulgare L.), a common crop cultivated around the world. Barley seedlings were grown in hydroponic culture for three weeks to include NPs (125, 250, 500, and 1000 mg/L). Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) techniques were used to assess their uptake and translocation. Photosynthesis marker genes were quantified by RT-qPCR. Results revealed that increasing doses of Fe3O4 NPs were gradually enhanced the plant growth up to 500 mg/L, which promoted the fresh weight (FW) respectively ∼19% and ∼88% for leaf and root tissues than the ones for control. No phytotoxic effect was recorded even at high NPs doses. NPs inclusion increased some phenological parameters such as chlorophyll, total soluble protein, number of chloroplasts, and dry weight. High NPs doses dramatically reduced the catalase activity and hydrogen peroxide content, suggesting a possible function of NPs as nanozyme in vivo. TEM observations showed that Fe3O4 NPs penetrated and internalized in the root cells. In leaves, they were mostly existed at the surrounding cell wall, suggesting their translocation from root to shoot without cellular penetration. Further analysis by using VSM confirmed the existence of Fe3O4 NPs in leaves which result in dramatic alterations of the photosystem genes (PetA, psaA, BCA and psbA). In conclusion, barley plants uptake and translocate Fe3O4 NPs, which promoted the plant growth probably due to the promoted gene expression and efficient photosynthetic activity.


Subject(s)
Hordeum/drug effects , Magnetite Nanoparticles/adverse effects , Nanoparticles/chemistry , Photosynthesis/genetics , Ferric Compounds/adverse effects , Ferric Compounds/pharmacokinetics , Hordeum/genetics , Hordeum/metabolism , Hydroponics , Nanoparticles/adverse effects , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Roots/metabolism , Seedlings/metabolism
12.
Plant Physiol Biochem ; 139: 56-65, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30878838

ABSTRACT

This study investigates the effect of SPIONs (superparamagnetic iron oxide nanoparticles, ∼12.5 nm in size) on summer squash plant (Cucurbita pepo) in the presence and absence of supplementary iron (Fe(II)-EDTA). The plants were grown in nutrient solution with different iron sources: (i) Fe(II)-EDTA, (ii) without Fe(II)-EDTA (iii) SPIONs only, and (iv) Fe(II)-EDTA with SPIONs. Plant growth and development were assessed after 20 days of soaking by measuring phenological parameters such as plant biomass, chlorophyll content, amount of carotenoids, and the catalase enzyme activity. Transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray diffraction, and vibrating sample magnetometer methods were used to detect uptake and translocation of SPIONs in plant tissues. Our results showed that SPIONs treatment (without Fe(II)-EDTA) caused growth retardation and decreased the plant biomass and chlorophyll content. Hence, they are not efficient sources to compensate for iron demand of squash plant. Electron microscopy observations, magnetization and elemental analyses revealed that SPIONs are taken-up by plant roots but not translocate to upper organs. In roots, SPIONs use a symplastic route for intercellular transfer. These findings suggest that as an iron source, SPIONs alone are not efficient for plant growth, but can contribute it together with Fe(II)-EDTA.


Subject(s)
Cucurbita/drug effects , Edetic Acid/pharmacology , Ferrous Compounds/pharmacology , Magnetite Nanoparticles , Carotenoids/metabolism , Catalase/metabolism , Chlorophyll/metabolism , Cucurbita/growth & development , Cucurbita/physiology , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism
13.
Environ Pollut ; 243(Pt B): 872-881, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30245449

ABSTRACT

The main objective of this study was to assess the uptake and translocation of MnFe2O4 magnetic nanoparticles (MNPs) in hydroponically grown barley (Hordeum vulgare L.). Hydrothermally synthesized and well characterized MNPs (average crystallite size of 14.5 ±â€¯0.5 nm) with varied doses (62.5, 125, 250, 500, and 1000 mg L-1) were subjected to the plants at germination and early growing stages (three weeks). The tissues analyzed by vibrating-sample magnetometer (VSM) and transmission electron microscopy (TEM) revealed the uptake and translocation of MNPs, as well as their internalization in the leaf cells. Also, elemental analysis proved that manganese (Mn) and iron (Fe) contents were ∼7-9 times and ∼4-7 times higher in the leaves of MNPs-treated plants than the ones for non-treated control, respectively. 250 mg L-1 of MNPs significantly (at least p < 0.05) promoted the fresh weight (FW, %10.25). However, higher concentrations (500 and 1000 mg L-1) remarkably reduced the increase to %8 and %5, respectively, possibly due to the restricted water uptake. Also, catalase activity was increased from 91 (µM H2O2 min-1 mg-1) to 138 in leaves, and decreased to 66 in roots upon 1000 mg L-1 of MNPs application. Chlorophyll and carotenoid contents were not significantly changed, except chlorophyll a (%6 increase at 1000 mg L-1, p < 0.05). Overall, MnFe2O4 NPs were up-taken from the roots and migrated to the leaves which promoted the growth parameters of barley. Hence, MNPs can be suggested for barley breeding programs and can be proposed as effective delivery system for agrochemicals. However, the possible negative effect of MNPs due to its potential horizontal transfer from plants to animals via the food chain must be also considered.


Subject(s)
Ferric Compounds/toxicity , Hordeum/drug effects , Metal Nanoparticles/toxicity , Chlorophyll/analysis , Enzyme Activation/drug effects , Germination/drug effects , Hordeum/enzymology , Hordeum/ultrastructure , Hydroponics , Magnetics , Manganese Compounds , Microscopy, Electron, Transmission , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plant Roots/drug effects , Plant Roots/ultrastructure
14.
Mol Biol Rep ; 45(3): 211-225, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29399733

ABSTRACT

Developmental processes and stress-induction activate many key proteins in plants such as metacaspase which regulate programmed cell death (PCD). In this study, identification of barley metacaspases and their possible roles upon boron (B)-induction was investigated by using in silico and wet-lab methods. Genome-wide analysis revealed that barley genome harbor ten metacaspases which divided into three groups: Type-I, -I* and -II. Segmental and tandem duplication contributed their expansion. Metacaspase-specific catalytic residues (His and Cys) were found to be altered in HvMC1, 2, and 4, in which His exchanged to Meth or Ala, critical for their activity and substrate selectivity. Cis-acting elements were found to be associated with three main processes: stress response, growth/development, and light response. Digital expression analysis from eight tissues revealed tissue specific metacaspase expressions. In addition, RT-qPCR analysis conducted in appropriate (50 µM) and excess-B (1 and-3 mM) conditions in different time points (3 and 10 days). Toxic level of B caused growth inhibition and chlorosis which appeared at the leaf tips. Also, PCD initiation was detected after 3 days of excess-B exposure. Digital expression and qPCR analysis agreed with each other that HvMC4 expression was significantly increased upon excess-B supplementation. In opposite, HvMC5 was down-regulated in the leaf zones which was another critical B-responsive gene in barley. Hence, HvMC4 and HvMC5 seem to have antagonistic effect during PCD regulation. These results can provide insights for metacaspase functionality in barley, not only limited for B-induction but also various kinds of PCD-causing conditions.


Subject(s)
Boron/toxicity , Caspases/genetics , Caspases/metabolism , Hordeum/drug effects , Hordeum/enzymology , Apoptosis/genetics , Databases, Genetic , Genome-Wide Association Study , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
15.
J Plant Physiol ; 216: 212-217, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28732263

ABSTRACT

Gypsophila sphaerocephala is a naturally Boron (B) tolerant species that can grow around the B mining areas in Turkey, where the B concentration in soil reaches a lethal dose for plants (up to ∼8900mgkg-1 (∼140mM). While its interesting survival capacity in extremely B containing soils, any molecular research has been conducted to understand its high tolerance mechanism yet. In the present study, we have performed a proteomic analysis of this plant to understand its high tolerance towards B-stress. Seedlings of G. sphaerocephala were collected from B mining area and were adapted to greenhouse conditions. An excessive level of Boric acid (3mM)was applied to the plantlets for 24h. Total proteins were precipitated by using TCA/Acetone method. 2D-PAGE (two-dimensional polyacrylamide gel electrophoresis) analysis of the proteins was carried out. Out of 121 protein spots, 14 were differentially expressed between the control and B-exposed G. sphaerocephala roots. The peptide profile of each protein was determined by MALDI-TOF mass spectrometer after in-gel trypsin digestion. The identified proteins are involved in different mechanisms in the cell such as in antioxidant mechanism, energy metabolism, protein degradation, lipid biosynthesis and signaling pathways, indicating that G. sphaerocephala has multiple cooperating mechanisms to protect itself from high B levels. Overall, this study sheds light on to the possible regulatory switches (gene/s) controlling the B-tolerance proteins and their possible roles in plant's defense mechanism.


Subject(s)
Adaptation, Physiological/drug effects , Boron/toxicity , Caryophyllaceae/metabolism , Plant Proteins/metabolism , Proteomics/methods , Antioxidants/metabolism , Caryophyllaceae/drug effects , Electrophoresis, Gel, Two-Dimensional , Lipids/biosynthesis , Proteolysis/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Gene ; 557(1): 71-81, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25498907

ABSTRACT

Boron (B) is an essential micronutrient for optimum plant growth. However, above certain threshold B is toxic and causes yield loss in agricultural lands. While a number of studies were conducted to understand B tolerance mechanism, a transcriptome-wide approach for B tolerant barley is performed here for the first time. A high-throughput RNA-Seq (cDNA) sequencing technology (Illumina) was used with barley (Hordeum vulgare), yielding 208 million clean reads. In total, 256,874 unigenes were generated and assigned to known peptide databases: Gene Ontology (GO) (99,043), Swiss-Prot (38,266), Clusters of Orthologous Groups (COG) (26,250), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (36,860), as determined by BLASTx search. According to the digital gene expression (DGE) analyses, 16% and 17% of the transcripts were found to be differentially regulated in root and leaf tissues, respectively. Most of them were involved in cell wall, stress response, membrane, protein kinase and transporter mechanisms. Some of the genes detected as highly expressed in root tissue are phospholipases, predicted divalent heavy-metal cation transporters, formin-like proteins and calmodulin/Ca(2+)-binding proteins. In addition, chitin-binding lectin precursor, ubiquitin carboxyl-terminal hydrolase, and serine/threonine-protein kinase AFC2 genes were indicated to be highly regulated in leaf tissue upon excess B treatment. Some pathways, such as the Ca(2+)-calmodulin system, are activated in response to B toxicity. The differential regulation of 10 transcripts was confirmed by qRT-PCR, revealing the tissue-specific responses against B toxicity and their putative function in B-tolerance mechanisms.


Subject(s)
Boron/toxicity , Gene Expression Regulation, Plant/drug effects , Hordeum/drug effects , Hordeum/genetics , Base Sequence , Calmodulin/biosynthesis , Cation Transport Proteins/biosynthesis , DNA, Plant/genetics , Databases, Protein , Enzyme Activation/drug effects , Gene Expression Profiling , Genes, Plant/genetics , Glutamate Dehydrogenase/biosynthesis , High-Throughput Nucleotide Sequencing , Phospholipases/biosynthesis , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Roots/drug effects , Plant Roots/genetics , Protein Serine-Threonine Kinases/biosynthesis , Sequence Analysis, DNA , Transcriptome/genetics , Ubiquitin-Protein Ligases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...