Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 220(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37462916

ABSTRACT

Immunoglobulin A (IgA) is secreted into breast milk and is critical for both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity; however, heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery. Surprisingly, we also observed intradonor variability in the BrmIgA response to closely related bacterial isolates. Conversely, longitudinal analysis showed that the antibacterial BrmIgA reactivity was relatively stable through time, even between sequential infants, indicating that mammary gland IgA responses are durable. Together, our study demonstrates that the antibacterial BrmIgA reactivity displays interindividual heterogeneity but intraindividual stability. These findings have important implications for how breast milk shapes the development of the preterm infant microbiota and protects against necrotizing enterocolitis.


Subject(s)
Infant, Premature , Milk, Human , Infant , Female , Infant, Newborn , Humans , Immunoglobulin A , Bacteria , Anti-Bacterial Agents
2.
bioRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993366

ABSTRACT

Immunoglobulin A (IgA) is secreted into breast milk and is critical to both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity, however heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery. We also observed intra-donor variability in the BrmIgA response to closely related bacterial isolates. Conversely, longitudinal analysis showed that the anti-bacterial BrmIgA reactivity was relatively stable through time, even between sequential infants, indicating that mammary gland IgA responses are durable. Together, our study demonstrates that the anti-bacterial BrmIgA reactivity displays inter-individual heterogeneity but intra-individual stability. These findings have important implications for how breast milk shapes the development of the infant microbiota and protects against Necrotizing Enterocolitis. Summary: We analyze the ability of breast milk-derived Immunoglobulin A (IgA) antibodies to bind the infant intestinal microbiota. We discover that each mother secretes into their breast milk a distinct set of IgA antibodies that are stably maintained over time.

3.
FASEB J ; 36(2): e22157, 2022 02.
Article in English | MEDLINE | ID: mdl-35032404

ABSTRACT

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis. Molecular analysis revealed that ANKS6 liver pathology is associated with the infiltration of inflammatory macrophages to the periportal fibrotic tissue and ductal epithelium. To further investigate the role of macrophages in CHF pathophysiology, we generated a novel liver-specific Anks6 knockout mouse model. The mutant mice develop biliary abnormalities and rapidly progressing periportal fibrosis reminiscent of human CHF. The development of portal fibrosis in Anks6 KO mice coincided with the accumulation of inflammatory monocytes and macrophages in the mutant liver. Gene expression and flow cytometric analysis demonstrated the preponderance of M1- over M2-like macrophages at the onset of fibrosis. A critical role for macrophages in promoting peribiliary fibrosis was demonstrated by depleting the macrophages with clodronate liposomes which effectively reduced inflammatory gene expression and fibrosis, and ameliorated tissue histology and biliary function in Anks6 KO livers. Together, this study demonstrates that macrophages play an important role in the initiation of liver fibrosis in ANKS6-deficient livers and their therapeutic elimination may provide an avenue to mitigate CHF in patients.


Subject(s)
Carrier Proteins/metabolism , Cholestasis/pathology , Liver Cirrhosis/metabolism , Liver/metabolism , Macrophages/metabolism , Animals , Disease Models, Animal , Gene Expression/physiology , Inflammation/metabolism , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology
4.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34861182

ABSTRACT

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Subject(s)
B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , Colon/pathology , Colorectal Neoplasms/immunology , Gastrointestinal Microbiome/immunology , Helicobacter Infections/immunology , Helicobacter hepaticus/physiology , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T Follicular Helper Cells/immunology , Tertiary Lymphoid Structures/immunology , Animals , Disease Models, Animal , Humans , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism
5.
Immunity ; 54(8): 1745-1757.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34348118

ABSTRACT

Environmental enteric dysfunction (EED) is a gastrointestinal inflammatory disease caused by malnutrition and chronic infection. EED is associated with stunting in children and reduced efficacy of oral vaccines. To study the mechanisms of oral vaccine failure during EED, we developed a microbiota- and diet-dependent mouse EED model. Analysis of E. coli-labile toxin vaccine-specific CD4+ T cells in these mice revealed impaired CD4+ T cell responses in the small intestine and but not the lymph nodes. EED mice exhibited increased frequencies of small intestine-resident RORγT+FOXP3+ regulatory T (Treg) cells. Targeted deletion of RORγT from Treg cells restored small intestinal vaccine-specific CD4 T cell responses and vaccine-mediated protection upon challenge. However, ablation of RORγT+FOXP3+ Treg cells made mice more susceptible to EED-induced stunting. Our findings provide insight into the poor efficacy of oral vaccines in EED and highlight how RORγT+FOXP3+ Treg cells can regulate intestinal immunity while leaving systemic responses intact.


Subject(s)
Bacterial Toxins/immunology , Escherichia coli Vaccines/immunology , Gastrointestinal Diseases/immunology , Intestine, Small/immunology , T-Lymphocytes, Regulatory/immunology , Administration, Oral , Animals , Cell Line , Disease Models, Animal , Drosophila , Escherichia coli/immunology , Female , Forkhead Transcription Factors/metabolism , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Vaccination
6.
Am J Pathol ; 191(4): 631-651, 2021 04.
Article in English | MEDLINE | ID: mdl-33385344

ABSTRACT

Cyclophosphamide may cause hemorrhagic cystitis and eventually bladder urothelial cancer. Genetic determinants for poor outcomes are unknown. We assessed actions of fibroblast growth factor receptor (FGFR) 2 in urothelium after cyclophosphamide exposure. Conditional urothelial deletion of Fgfr2 (Fgfr2KO) did not affect injury severity or proliferation of keratin 14+ (KRT14+) basal progenitors or other urothelial cells 1 day after cyclophosphamide exposure. Three days after cyclophosphamide exposure, Fgfr2KO urothelium had defective regeneration, fewer cells, larger basal cell bodies and nuclei, paradoxical increases in proliferation markers, and excessive replication stress versus controls. Fgfr2KO mice had evidence of pathologic basal cell endoreplication associated with absent phosphorylated ERK staining and decreased p53 expression versus controls. Mice with conditional deletion of Fgfr2 in urothelium enriched for KRT14+ cells reproduced Fgfr2KO abnormalities after cyclophosphamide exposure. Fgfr2KO urothelium had defects up to 6 months after injury versus controls, including larger basal cells and nuclei, more persistent basal and ectopic lumenal KRT14+ cells, and signs of metaplasia (attenuated E-cadherin staining). Mice missing one allele of Fgfr2 also had (less severe) regeneration defects and basal cell endoreplication 3 days after cyclophosphamide exposure versus controls. Thus, reduced FGFR2/ERK signaling apparently leads to abnormal urothelial repair after cyclophosphamide exposure from pathologic basal cell endoreplication. Patients with genetic variants in FGFR2 or its ligands may have increased risks of hemorrhagic cystitis or urothelial cancer from persistent and ectopic KRT14+ cells.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 2/genetics , Regeneration/physiology , Urinary Bladder/metabolism , Urothelium/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cyclophosphamide/pharmacology , Cystitis/chemically induced , Cystitis/metabolism , Disease Models, Animal , Mice, Transgenic , Muscle, Smooth/metabolism , Receptor, Fibroblast Growth Factor, Type 2/drug effects , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Regeneration/drug effects , Regeneration/genetics , Risk , Urinary Bladder/injuries , Urinary Bladder/pathology , Urothelium/pathology
7.
Nat Med ; 25(7): 1110-1115, 2019 07.
Article in English | MEDLINE | ID: mdl-31209335

ABSTRACT

Neonates are protected from colonizing bacteria by antibodies secreted into maternal milk. Necrotizing enterocolitis (NEC) is a disease of neonatal preterm infants with high morbidity and mortality that is associated with intestinal inflammation driven by the microbiota1-3. The incidence of NEC is substantially lower in infants fed with maternal milk, although the mechanisms that underlie this benefit are not clear4-6. Here we show that maternal immunoglobulin A (IgA) is an important factor for protection against NEC. Analysis of IgA binding to fecal bacteria from preterm infants indicated that maternal milk was the predominant source of IgA in the first month of life and that a relative decrease in IgA-bound bacteria is associated with the development of NEC. Sequencing of IgA-bound and unbound bacteria revealed that before the onset of disease, NEC was associated with increasing domination by Enterobacteriaceae in the IgA-unbound fraction of the microbiota. Furthermore, we confirmed that IgA is critical for preventing NEC in a mouse model, in which pups that are reared by IgA-deficient mothers are susceptible to disease despite exposure to maternal milk. Our findings show that maternal IgA shapes the host-microbiota relationship of preterm neonates and that IgA in maternal milk is a critical and necessary factor for the prevention of NEC.


Subject(s)
Enterocolitis, Necrotizing/prevention & control , Immunoglobulin A/physiology , Adult , Animals , Enterobacteriaceae/physiology , Enterocolitis, Necrotizing/epidemiology , Female , Host Microbial Interactions , Humans , Infant, Newborn , Infant, Premature , Male , Mice , Mice, Inbred C57BL , Pregnancy
8.
J Immunol ; 201(1): 243-250, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29777027

ABSTRACT

Inflammatory bowel disease has been associated with the dysregulation of T cells specific to Ags derived from the intestinal microbiota. How microbiota-specific T cells are regulated is not completely clear but is believed to be mediated by a combination of IgA, regulatory T cells, and type 3 innate lymphoid cells. To test the role of these regulatory components on microbiota-specific T cells, we bred CBir1 TCR transgenic (CBir1Tg) mice (specific to flagellin from common intestinal bacteria) onto a lymphopenic Rag1-/- background. Surprisingly, T cells from CBir1Tg mice bred onto a Rag1-/- background could not induce colitis and did not differentiate to become effectors under lymphopenic conditions, despite deficits in immunoregulatory factors, such as IgA, regulatory T cells, and type 3 innate lymphoid cells. In fact, upon transfer of conventional CBir1Tg T cells into lymphopenic mice, the vast majority of proliferating T cells responded to Ags other than CBir1 flagellin, including those found on other bacteria, such as Helicobacter spp. Thus, we discovered a caveat in the CBir1Tg model within our animal facility that illustrates the limitations of using TCR transgenics at mucosal surfaces, where multiple TCR specificities can respond to the plethora of foreign Ags. Our findings also indicate that T cell specificity to the microbiota alone is not sufficient to induce T cell activation and colitis. Instead, other interrelated factors, such as the composition and ecology of the intestinal microbiota and host access to Ag, are paramount in controlling the activation of microbiota-specific T cell clones.


Subject(s)
Flagellin/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/microbiology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Cell Proliferation , Cells, Cultured , Colitis/metabolism , Female , Helicobacter/immunology , Immunoglobulin A/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...