Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 459: 132251, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37591166

ABSTRACT

Dehalococcoides is a functional microorganism that completely dechlorinates trichloroethene (TCE). Augmentation with pure Dehalococcoides is important for reducing environmental disturbances that accompany bioaugmentation. However, the applicability of Dehalococcoides-bioaugmentation to contaminated soils is unclear. In this study, seven low-carbon energy sources (methanol, formate, acetate, ethanol, lactate, citrate, and benzoate) were used as electron donors for Dehalococcides to evaluate its applicability in remediating TCE-contaminated soils. Soil microcosms supplemented with ethanol, formate, or lactate showed relatively high dechlorination activity within 111-180 days. The functional gene profiles predicted by PICRUSt2 from 16 S rRNA gene sequences were similar in the proportions of dehydrogenases, which initiate electron donor oxidation, in all soils and did not seem to reflect Dehalococcoides-bioaugmentation applicability. Soils with higher organic matter content (>3.2%; dry weight base) and protein concentration (>1.6 µg/mL) supported complete dechlorination. These results suggest that organic matter and nutrient availability mainly affect successful TCE dechlorination in Dehalococcoides-augmented soils. The study offers significant experimental support for comprehending the suitability of low-carbon energy sources in successful bioaugmentation, aiming to mitigate environmental disturbances associated with the process.


Subject(s)
Dehalococcoides , Lactic Acid , Carbon , Ethanol , Formates , Nutrients
2.
Chemosphere ; 307(Pt 4): 136080, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35988762

ABSTRACT

Various substrates have been used to stimulate habitat microbes in chloroethene-contaminated groundwater, however, the specific efficiency and minimum growth of microbes have rarely been studied. This study investigated the effects of seven substrates on trichloroethene (TCE) dechlorination by augmentation of groundwater with Dehalococcoides mccartyi NIT01 and its contribution to the microbial community. Three out of eight test groups completed dechlorination of 1 mM TCE-to-ethene in varying durations; groundwater supplemented with formate (FOR) required 78 days, whereas the microcosms with lactate (LAC) and citrate (CIT) required approximately twice as long (143 days). The calculated efficiency of how much produced H2 was used in dechlorination indicated a higher efficiency in FOR (36%) compared with LAC (1.9%) or CIT (2.9%). FOR showed lower microbial growth (3.4 × 105 copies/mL) than LAC (1.5 × 106) or CIT (4.4 × 106), and maintained a higher Shannon diversity index (5.65) than LAC (4.97) and CIT (4.30). The rapid and higher H2 transfer efficiency with lower bacterial growth by using formate was attributed to the slightly positive Gibbs free energy identified in H2 production requiring a H2-utilizer, lower carbon in the molecule, and adaptation to metabolic potential of the original groundwater microbiome. Formate is, therefore, a promising electron donor for rapid Dehalococcoides-augmented remediation with minimum bacterial growth. Sequential transferring of the FOR culture successfully maintained TCE-to-ethene dechlorination activity and enriched the members of genera Dehalococcoides (33%), Methanosphaerula (23%), Rectinema (13%), and Desulfitobacterium (5.6%). This suggests that formate is transferred to H2 and acetate, and provided to Dehalococcoides.


Subject(s)
Chloroflexi , Groundwater , Microbiota , Trichloroethylene , Biodegradation, Environmental , Carbon/metabolism , Chloroflexi/metabolism , Citrates , Dehalococcoides , Electrons , Ethylenes , Formates/metabolism , Groundwater/microbiology , Lactates/metabolism , RNA, Ribosomal, 16S/metabolism , Trichloroethylene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL