Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Brain Res ; : 148987, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718851

ABSTRACT

Dynamin is a microtubule (MT) binding protein playing a key role in vesicle endocytosis. In a brain slice model, tau loaded in presynaptic terminals assembles MTs, thereby impairing vesicle endocytosis via depletion of cytosolic dynamin. The peptide PHDP5, derived from the pleckstrin homology domain of dynamin 1, inhibits dynamin-MT interaction and rescues endocytosis and synaptic transmission impaired by tau when co-loaded in presynaptic terminals. We tested whether in vivo administration of PHDP5 could rescue their learning/memory deficits observed in Alzheimer's disease (AD) model mice. A modified PHDP5 incorporating a cell-penetrating peptide (CPP) and a FITC fluorescent marker was delivered intranasally to Tau609 transgenic (Tg) and 3xTg-AD mice. FITC-positive puncta were observed in the hippocampus of mice infused with PHDP5 or scrambled (SPHDP5) peptide, but not in saline-infused controls. In the Morris water maze (MWM) test for spatial learning/memory, AD model mice treated with FITC-PHDP5-CPP showed prominent improvements in learning and memory, performing close to the level of saline-infused WT mice control. In contrast, mice treated with a scrambled construct (FITC-SPHDP5-CPP) showed no significant improvement. We conclude that PHDP5 can be a candidate for human AD therapy.

2.
J Control Release ; 367: 515-521, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237689

ABSTRACT

This study explored the effectiveness of nasal administration in delivering magnetic nanoparticles into the brain for magnetic particle imaging of target regions. Successful delivery of iron oxide nanoparticles, which serve as contrast agents, to specific sites within the brain is crucial for achieving magnetic particle imaging. Nasal administration has gained attention as a method to bypass the blood-brain barrier and directly deliver therapeutics to the brain. In this study, we investigated surface modification techniques for administering magnetic nanoparticles into the nasal cavity, and provided experimental validation through in vivo studies. By compositing magnetic nanoparticles with gold nanoparticles, we enabled additional surface modification via AuS bonds without compromising their magnetic properties. The migration of the designed PEGylated magnetic nanoparticles into the brain following nasal administration was confirmed by magnetization measurements. Furthermore, we demonstrated the accumulation of these nanoparticles at specific target sites using probe molecules immobilized on the PEG terminus. Thus, the efficacy of delivering magnetic nanoparticles to the brain via nasal administration was demonstrated in this study. The findings of this research are expected to contribute significantly to the realization of magnetic particle imaging of target regions within the brain.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Administration, Intranasal , Magnetite Nanoparticles/chemistry , Gold , Brain/diagnostic imaging , Nanoparticles/chemistry , Magnetic Phenomena , Particle Size , Drug Delivery Systems
3.
Geroscience ; 46(2): 1971-1987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37783918

ABSTRACT

Neurodegenerative diseases including Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies are age-related disorders and the main cause of dementia. They are characterized by the cerebral accumulation of Aß, tau, α-synuclein, and TDP-43. Because the accumulation begins decades before disease onset, treatment should be started in the preclinical stage. Such intervention would be long-lasting, and therefore, prophylactic agents should be safe, non-invasively taken by the patients, and inexpensive. In addition, the agents should be broadly effective against etiologic proteins and capable of repairing neurons damaged by toxic oligomers. These requirements are difficult to meet with single-ingredient pharmaceuticals but may be feasible by taking proper diets composed of multiple ingredients. As a source of such diets, we focused on the Hawaiian native herb Mamaki. From its dried leaves and fruits, we made three preparations: hot water extract of the leaves, non-extracted simple crush powder of the leaves, and simple crush powder of the fruits, and examined their effects on the cognitive function and neuropathologies in four different mouse models of neurodegenerative dementia. Hot water extract of the leaves attenuated neuropathologies, restored synaptophysin levels, suppressed microglial activation, and improved memory when orally administered for 1 month. Simply crushed leaf powder showed a higher efficacy, but simply crushed fruit powder displayed the strongest effects. Moreover, the fruit powder significantly enhanced the levels of brain-derived neurotrophic factor expression and neurogenesis, indicating its ability to repair neurons. These results suggest that crushed Mamaki leaves and fruits are promising sources of dementia-preventive diets.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Humans , Neurodegenerative Diseases/prevention & control , Hawaii , Powders , Alzheimer Disease/prevention & control , Alzheimer Disease/metabolism , Neurons/metabolism , Water
4.
J Nanobiotechnology ; 21(1): 36, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721182

ABSTRACT

BACKGROUND: Although a large amount of evidence has revealed that amyloid ß (Aß), especially Aß oligomers, protofibrils, and pyroglutamated Aßs, participate primarily in the pathophysiological processes of Alzheimer's disease, most clinical trials of anti-Aß antibody therapy have never acquired successful efficacy in human clinical trials, partly because peripheral administration of antibody medications was unable to deliver sufficient amounts of the molecules to the brain. Recently, we developed polymeric nanomicelles capable of passing through the blood-brain barrier that function as chaperones to deliver larger amounts of heavy molecules to the brain. Herein, we aimed to evaluate the efficacy of newly developed antibody 6H4 fragments specific to Aß oligomers encapsulated in polymeric nanomicelles on the development of Alzheimer's disease pathology in Alzheimer's disease model mice at the age of emergence of early Alzheimer's disease pathology. RESULTS: During the 10-week administration of 6H4 antibody fragments in polymeric nanomicelles, a significant reduction in the amounts of various toxic Aß species, such as Aß oligomers, toxic Aß conformers, and pyroglutamated Aßs in the brain was observed. In addition, immunohistochemistry indicated inhibition of diameters of Aß plaques, Aß-antibody immunoreactive areas, and also plaque core formation. Behavioral analysis of the mice model revealed that the 6H4 fragments-polymeric nanomicelle group was significantly better at maintaining long-term spatial reference memory in the probe and platform tests of the water maze, thereby indicating inhibition of the pathophysiological process of Alzheimer's disease. CONCLUSIONS: The results indicated that the strategy of reducing toxic Aß species in early dementia owing to Alzheimer's disease by providing sufficient antibodies in the brain may modify Alzheimer's disease progression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Animals , Mice , Alzheimer Disease/drug therapy , Brain , Blood-Brain Barrier , Antibodies , Plaque, Amyloid , Polymers
5.
Biomedicines ; 10(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35625816

ABSTRACT

The non-coding GGGGCC hexanucleotide repeat expansion (HRE) in C9orf72 gene is a dominant cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This intronic mutation elicits the formation of nuclear and cytoplasmic inclusions containing RNA, RNA-binding proteins, and HRE-derived dipeptide repeat proteins (DPRs), leading to neurodegeneration via the gain-of-toxic function or loss-of-function of relevant proteins. Using C9-500 mice harboring ~500 repeats of the GGGGCC sequence in human C9orf72 gene, we investigated the effects of rifampicin against HRE-related pathological phenotypes. Rifampicin was administered intranasally to 4.5- to 5-month-old mice for 1 month, and their cognitive function and neuropathology were assessed by the Morris water maze test and immunohistochemical staining. Rifampicin treatment reduced the formation of RNA foci and cytoplasmic inclusions containing DPRs or phosphorylated TDP-43, and furthermore, the levels of phosphorylated double-strand RNA-dependent protein kinase (PKR) that regulates repeat-associated non-ATG (RAN) translation. Synapse loss in the hippocampus and neuronal loss and microglial activation in the prefrontal and motor cortices were also attenuated, and mouse memory was significantly improved. Our findings suggest a therapeutic potential of nasal rifampicin in the prevention of C9orf72-linked neurodegenerative disorders.

6.
Proc Natl Acad Sci U S A ; 119(12): e2117723119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290109

ABSTRACT

Type 2 diabetes mellitus is known to be a risk factor for Alzheimer's disease (AD), but the underlying mechanisms remain unclear. In AD, the cerebral accumulation of amyloid ß (Aß) triggers a pathological cascade leading to neurodegeneration. Plasma Aß levels are thought to reflect the brain amyloid pathology and currently used as a diagnostic biomarker of AD. However, amyloid precursor protein and Aß-generating enzymes, ß- and γ-secretases, are widely expressed in various peripheral tissues. Previous reports have shown that glucose and insulin loading cause a transient increase of plasma Aß in mice and humans. These findings led us to speculate that plasma Aß is produced from glucose- and insulin-susceptible peripheral tissues to play a role in glucose and insulin metabolism. To test this hypothesis, we investigated the effects of glucose and insulin on Aß secretion and the effect of Aß on insulin secretion in vivo, ex vivo, and in vitro. Aß was found to be secreted from ß-cells of the pancreas along with insulin upon glucose stimulation. Upon insulin stimulation, Aß was secreted from cells of insulin-targeted organs, such as adipose tissues, skeletal muscles, and the liver, along with their organokines. Furthermore, Aß inhibited the glucose-triggered insulin secretion from ß-cells, slowing down glucose clearance from the blood. These results suggest that peripheral Aß acts as a negative modulator of insulin secretion. Our findings provide a possible mechanism linking diabetes to AD and call attention to how plasma Aß levels are used in AD diagnosis.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion
7.
Biomedicines ; 10(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35203506

ABSTRACT

The cell-to-cell transmission of tau aggregates is considered a mechanism underlying the intracerebral spreading of tau pathology in Alzheimer's disease (AD) and other tauopathies. Recent studies suggest that tau oligomers, rather than fibrils, participate in this process. We previously showed that intranasal rifampicin inhibits tau oligomer accumulation and improves cognition in tauopathy mice. In the present study, we examined the effects of nasal rifampicin on tau propagation in a new mouse model of tauopathy. A tau oligomer-rich fraction prepared from the brain of an AD patient was injected into a unilateral hippocampus of tau264 mice that express both 3-repeat and 4-repeat wild-type human tau. Rifampicin administration was started one week after the injection and performed three times a week for 24 weeks. Cognitive function and tau pathology were assessed by the Morris water maze test and brain section staining. Rifampicin treatment inhibited the spreading of tau oligomers from the injection site to other brain regions and neurofibrillary tangle formation in the entorhinal cortex. Synapse and neuronal loss in the hippocampus were also prevented, and cognitive function remained normal. These results suggest that intranasal rifampicin could be a promising remedy that halts the progression of tauopathy by inhibiting tau oligomer propagation.

8.
Front Neurosci ; 15: 763476, 2021.
Article in English | MEDLINE | ID: mdl-34966254

ABSTRACT

Amyloidogenic protein oligomers are thought to play an important role in the pathogenesis of neurodegenerative dementia, including Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies. Previously we demonstrated that oral or intranasal rifampicin improved the cognition of APP-, tau-, and α-synuclein-transgenic mice by reducing the amount of Aß, tau, and α-synuclein oligomers in the brain. In the present study, to explore more effective and safer medications for dementia, we tested the drug combination of rifampicin and resveratrol, which is a multifunctional natural polyphenol with the potential to antagonize the adverse effects of rifampicin. The mixture was intranasally administered to APP-, tau-, and α-synuclein-transgenic mice, and their memory and oligomer-related pathologies were evaluated. Compared with rifampicin and resveratrol alone, the combinatorial medicine significantly improved mouse cognition, reduced amyloid oligomer accumulation, and recovered synaptophysin levels in the hippocampus. The plasma levels of liver enzymes, which reflect hepatic injury and normally increase by rifampicin treatment, remained normal by the combination treatment. Notably, resveratrol alone and the combinatorial medicine, but not rifampicin alone, enhanced the levels of brain-derived neurotrophic factor (BDNF) and its precursor, pro-BDNF, in the hippocampus. Furthermore, the combination showed a synergistic effect in ameliorating mouse cognition. These results show the advantages of this combinatorial medicine with regards to safety and effectiveness over single-drug rifampicin. Our findings may provide a feasible means for the prevention of neurodegenerative dementia that targets toxic oligomers.

9.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445158

ABSTRACT

α-Synuclein oligomers are thought to play an important role in the pathogenesis of dementia with Lewy bodies (DLB). There is no effective cure for DLB at present. Previously, we demonstrated that in APP- and tau-transgenic mice, oral or intranasal rifampicin reduced brain Aß and tau oligomers and improved mouse cognition. In the present study, we expanded our research to DLB. Rifampicin was intranasally administered to 6-month-old A53T-mutant α-synuclein-transgenic mice at 0.1 mg/day for 1 month. The mice displayed memory impairment but no motor deficit at this age, indicating a suitable model of DLB. α-Synuclein pathologies were examined by the immunohistochemical/biochemical analyses of brain tissues. Cognitive function was evaluated by the Morris water maze test. Intranasal rifampicin significantly reduced the levels of [pSer129] α-synuclein in the hippocampus and α-synuclein oligomers in the visual cortex and hippocampus. The level of the presynaptic marker synaptophysin in the hippocampus was recovered to the level in non-transgenic littermates. In the Morris water maze, a significant improvement in spatial reference memory was observed in rifampicin-treated mice. Taken together with our previous findings, these results suggest that intranasal rifampicin is a promising remedy for the prevention of neurodegenerative dementia, including Alzheimer's disease, frontotemporal dementia, and DLB.


Subject(s)
Cognition/drug effects , Dementia/drug therapy , Lewy Body Disease/drug therapy , Rifampin/therapeutic use , alpha-Synuclein/metabolism , Administration, Intranasal , Animals , Dementia/metabolism , Dementia/pathology , Disease Models, Animal , Female , Lewy Bodies/drug effects , Lewy Bodies/metabolism , Lewy Bodies/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Male , Mice, Transgenic , Protein Multimerization/drug effects , Rifampin/administration & dosage , alpha-Synuclein/analysis
10.
Molecules ; 26(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806326

ABSTRACT

Recent evidence suggests that the formation of soluble amyloid ß (Aß) aggregates with high toxicity, such as oligomers and protofibrils, is a key event that causes Alzheimer's disease (AD). However, understanding the pathophysiological role of such soluble Aß aggregates in the brain in vivo could be difficult due to the lack of a clinically available method to detect, visualize, and quantify soluble Aß aggregates in the brain. We had synthesized a novel fluorinated curcumin derivative with a fixed keto form, named as Shiga-Y51, which exhibited high selectivity to Aß oligomers in vitro. In this study, we investigated the in vivo detection of Aß oligomers by fluorine-19 (19F) magnetic resonance imaging (MRI) using Shiga-Y51 in an APP/PS1 double transgenic mouse model of AD. Significantly high levels of 19F signals were detected in the upper forebrain region of APP/PS1 mice compared with wild-type mice. Moreover, the highest levels of Aß oligomers were detected in the upper forebrain region of APP/PS1 mice in enzyme-linked immunosorbent assay. These findings suggested that 19F-MRI using Shiga-Y51 detected Aß oligomers in the in vivo brain. Therefore, 19F-MRI using Shiga-Y51 with a 7 T MR scanner could be a powerful tool for imaging Aß oligomers in the brain.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Curcumin/metabolism , Disease Models, Animal , Fluorine-19 Magnetic Resonance Imaging/methods , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Animals , Brain/metabolism , Curcumin/chemistry , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/metabolism
11.
Biomaterials ; 270: 120686, 2021 03.
Article in English | MEDLINE | ID: mdl-33540171

ABSTRACT

The accumulation of ß-amyloid (Aß) aggregates in the brain occurs early in the progression of Alzheimer's disease (AD), and non-fibrillar soluble Aß oligomers are particularly neurotoxic. During binding to Aß fibrils, curcumin, which can exist in an equilibrium state between its keto and enol tautomers, exists predominantly in the enol form, and binding activity of the keto form to Aß fibrils is much weaker. Here we described the strong binding activity the keto form of curcumin derivative Shiga-Y51 shows for Aß oligomers and its scant affinity for Aß fibrils. Furthermore, with imaging mass spectrometry we revealed the blood-brain barrier permeability of Shiga-Y51 and its accumulation in the cerebral cortex and the hippocampus, where Aß oligomers were mainly localized, in a mouse model of AD. The keto form of curcumin derivatives like Shiga-Y51 could be promising seed compounds to develop imaging probes and therapeutic agents targeting Aß oligomers in the brain.


Subject(s)
Alzheimer Disease , Curcumin , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Mice , Peptide Fragments
12.
Neurosci Res ; 165: 61-68, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32348793

ABSTRACT

GABAergic system plays a part in synaptic plasticity in the hippocampus. We had reported a long-term potentiation (LTP)-like facilitation in vivo, known as synaptic plasticity, through GABAA receptor blockade by bicuculline and the expression of proteins involved with this synaptic plasticity in mouse hippocampus. In the present study, we aimed to show improvement of impaired synaptic plasticity through GABAA receptor blockade and to clarify the molecular mechanisms involved with this improvement in the hippocampus of mice overexpressing human amyloid precursor protein with the E693Δ mutation (APPOSK-Tg) as an Alzheimer's disease model showing impaired synaptic plasticity. Electrophysiological study showed that the LTP-like facilitation expressed with application of bicuculline in vivo was significantly greater than impaired tetanic LTP in APPOSK-Tg mice, which was improved by bicuculline. Proteomic analysis showed that the expression of 11 proteins in the hippocampus was significantly changed 8 h after bicuculline application to APPOSK-Tg mice. The identified proteins could be functionally classified as chaperone, cytoskeletal protein, energy metabolism, metabolism, neuronal development, and synaptic component. Additionally, western blotting validated the changes in four proteins. We therefore propose that the improvement of impaired synaptic plasticity through GABAA receptor blockade could be mediated by the changed expression of these proteins.


Subject(s)
Alzheimer Disease , Receptors, GABA-A , Alzheimer Disease/drug therapy , Animals , Hippocampus , Long-Term Potentiation , Mice , Neuronal Plasticity , Proteomics
13.
Int J Mol Sci ; 21(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580499

ABSTRACT

We previously identified a novel mutation in amyloid precursor protein from a Japanese pedigree of familial Alzheimer's disease, FAD (Osaka). Our previous positron emission tomography (PET) study revealed that amyloid ß (Aß) accumulation was negligible in two sister cases of this pedigree, indicating a possibility that this mutation induces dementia without forming senile plaques. To further explore the relationship between Aß, tau and neurodegeneration, we performed tau and Aß PET imaging in the proband of FAD (Osaka) and in patients with sporadic Alzheimer's disease (SAD) and healthy controls (HCs). The FAD (Osaka) patient showed higher uptake of tau PET tracer in the frontal, lateral temporal, and parietal cortices, posterior cingulate gyrus and precuneus than the HCs (>2.5 SD) and in the lateral temporal and parietal cortices than the SAD patients (>2 SD). Most noticeably, heavy tau tracer accumulation in the cerebellum was found only in the FAD (Osaka) patient. Scatter plot analysis of the two tracers revealed that FAD (Osaka) exhibits a distinguishing pattern with a heavy tau burden and subtle Aß accumulation in the cerebral cortex and cerebellum. These observations support our hypothesis that Aß can induce tau accumulation and neuronal degeneration without forming senile plaques.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Cerebellum/metabolism , Cerebral Cortex/metabolism , Mutation , tau Proteins/metabolism , Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cerebellum/pathology , Cerebral Cortex/pathology , Female , Humans , Male , Middle Aged
14.
Int J Mol Sci ; 21(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093100

ABSTRACT

Alzheimer's disease is believed to begin with synaptic dysfunction caused by soluble Aß oligomers. When this oligomer hypothesis was proposed in 2002, there was no direct evidence that Aß oligomers actually disrupt synaptic function to cause cognitive impairment in humans. In patient brains, both soluble and insoluble Aß species always coexist, and therefore it is difficult to determine which pathologies are caused by Aß oligomers and which are caused by amyloid fibrils. Thus, no validity of the oligomer hypothesis was available until the Osaka mutation was discovered. This mutation, which was found in a Japanese pedigree of familial Alzheimer's disease, is the deletion of codon 693 of APP gene, resulting in mutant Aß lacking the 22nd glutamate. Only homozygous carriers suffer from dementia. In vitro studies revealed that this mutation has a very unique character that accelerates Aß oligomerization but does not form amyloid fibrils. Model mice expressing this mutation demonstrated that all pathologies of Alzheimer's disease can be induced by Aß oligomers alone. In this review, we describe the story behind the discovery of the Osaka mutation, summarize the mutant's phenotypes, and propose a mechanism of its recessive inheritance.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Alzheimer Disease/congenital , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Heredity , Homozygote , Humans , Japan , Mice , Pedigree , Phenotype , Plaque, Amyloid/pathology , Sequence Deletion
15.
J Neurosci ; 39(34): 6781-6797, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31235644

ABSTRACT

Tau is a microtubule (MT)-associated protein that is localized to the axon. In Alzheimer's disease, the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. To investigate how this mislocalization occurs, we recently developed immunohistochemical tools that can separately detect endogenous mouse and exogenous human tau with high sensitivity, which allows us to visualize not only the pathological but also the pre-aggregated tau in mouse brain tissues of both sexes. Using these antibodies, we found that in tau-transgenic mouse brains, exogenous human tau was abundant in dendrites and somata even in the presymptomatic period, whereas the axonal localization of endogenous mouse tau was unaffected. In stark contrast, exogenous tau was properly localized to the axon in human tau knock-in mice. We tracked this difference to the temporal expression patterns of tau. Endogenous mouse tau and exogenous human tau in human tau knock-in mice exhibited high expression levels during the neonatal period and strong suppression into the adulthood. However, human tau in transgenic mice was expressed continuously and at high levels in adult animals. These results indicated the uncontrolled expression of exogenous tau beyond the developmental period as a cause of mislocalization in the transgenic mice. Superresolution microscopic and biochemical analyses also indicated that the interaction between MTs and exogenous tau was impaired only in the tau-transgenic mice, but not in knock-in mice. Thus, the ectopic expression of tau may be critical for its somatodendritic mislocalization, a key step of the tauopathy.SIGNIFICANCE STATEMENT Somatodendritic localization of tau may be an early step leading to the neuronal degeneration in tauopathies. However, the mechanisms of the normal axonal distribution of tau and the mislocalization of pathological tau remain obscure. Our immunohistochemical and biochemical analyses demonstrated that the endogenous mouse tau is transiently expressed in neonatal brains, that exogenous human tau expressed corresponding to such tau expression profile can distribute into the axon, and that the constitutive expression of tau into adulthood (e.g., human tau in transgenic mice) results in abnormal somatodendritic localization. Thus, the expression profile of tau is tightly associated with the localization of tau, and the ectopic expression of tau in matured neurons may be involved in the pathogenesis of tauopathy.


Subject(s)
Brain Chemistry/physiology , Brain/cytology , Dendrites/physiology , Ectopic Gene Expression/genetics , tau Proteins/biosynthesis , Animals , Animals, Newborn , Axons/metabolism , Brain/growth & development , Female , Gene Knock-In Techniques , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Neurons/metabolism , Primary Cell Culture , Tauopathies/metabolism
16.
Alzheimers Dement (N Y) ; 4: 304-313, 2018.
Article in English | MEDLINE | ID: mdl-30094330

ABSTRACT

INTRODUCTION: Oral rifampicin has been shown to significantly reduce amyloid ß (Aß) and tau pathologies in mice. However, it shows occasional adverse effects such as liver injury in humans, making its use difficult for a long period. METHODS: To explore safer rifampicin treatment, APPOSK mice, a model of Alzheimer's disease, were treated with rifampicin for 1 month via oral, intranasal, and subcutaneous administration, and its therapeutic efficacy and safety were compared. RESULTS: Intranasal or subcutaneous administration of rifampicin improved memory more effectively than oral administration. The improvement of memory was accompanied with the reduction of neuropathologies, including Aß oligomer accumulation, tau abnormal phosphorylation, and synapse loss. Serum levels of a liver enzyme significantly rose only by oral administration. Pharmacokinetic study revealed that the level of rifampicin in the brain was highest with intranasal administration. DISCUSSION: Considering its easiness and noninvasiveness, intranasal administration would be the best way for long-term dosing of rifampicin.

17.
Dement Geriatr Cogn Dis Extra ; 8(1): 77-84, 2018.
Article in English | MEDLINE | ID: mdl-29706984

ABSTRACT

BACKGROUND: Weight loss accelerates cognitive decline and increases mortality in patients with dementia. While acetylcholinesterase (AChE) inhibitors are known to cause appetite loss, we sometimes encounter patients in whom switching from donepezil (AChE inhibitor) to rivastigmine (AChE and butyrylcholinesterase [BuChE] inhibitor) improves appetite. Since BuChE inactivates ghrelin, a potent orexigenic hormone, we speculated that rivastigmine improves appetite by inhibiting BuChE-mediated ghrelin inactivation. METHODS: The subjects were patients with mild to moderate Alzheimer disease treated with either rivastigmine patch (n = 11) or donepezil (n = 11) for 6 months. Before and after treatment, we evaluated appetite (0, decreased; 1, slightly decreased; 2, normal; 3, slightly increased; 4, increased), cognitive function, and blood biochemical variables, including various hormones. RESULTS: Rivastigmine treatment significantly improved appetite (from 1.6 ± 0.5 to 2.6 ± 0.7), whereas donepezil treatment did not (from 2.0 ± 0.0 to 1.8 ± 0.4). Simultaneously, rivastigmine, but not donepezil, significantly decreased the serum cholinesterase activity (from 304.3 ± 60.5 to 246.8 ± 78.5 IU/L) and increased the cortisol level (from 11.86 ± 3.12 to 14.61 ± 3.29 µg/dL) and the acyl/des-acyl ghrelin ratio (from 4.03 ± 2.96 to 5.28 ± 2.72). The levels of leptin, insulin, total ghrel-in, and cognitive function were not significantly affected by either treatment. CONCLUSIONS: Our results suggest that compared with donepezil, rivastigmine has the advantage of improving appetite by increasing the acyl/des-acyl ghrelin ratio and cortisol level, thereby preventing weight loss.

18.
Heliyon ; 4(1): e00511, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29560429

ABSTRACT

Soluble oligomers of amyloid-ß (Aß) peptides (AßOs) contribute to neurotoxicity in Alzheimer's disease (AD). However, it currently remains unknown whether an increase in AßOs is the common phenotype in cellular and animal models. Furthermore, it has not yet been established whether experimental studies conducted using models overexpressing mutant genes of the amyloid precursor protein (APP) are suitable for investigating the underlying molecular mechanism of AD. We herein employed the Flp-In™ T-REx™-293 (T-REx 293) cellular system transfected with a single copy of wild-type, Swedish-, Dutch-, or London-type APP, and quantified the levels of Aß monomers (Aß1-40 and Aß1-42) and AßOs using an enzyme-linked immunosorbent assay (ELISA). The levels of extracellular AßOs were significantly higher in Dutch- and London-type APP-transfected cells than in wild-type APP-transfected cells. Increased levels were also observed in Swedish-type APP-transfected cells. On the other hand, intracellular levels of AßOs were unaltered among wild-type and mutant APP-transfected cells. Intracellular levels of Aß monomers were undetectable, and no common abnormality was observed in their extracellular levels or ratios (Aß1-42/Aß1-40) among the cells examined. We herein demonstrated that increased levels of extracellular AßOs are the common phenotype in cellular models harboring different types of APP mutations. Our results suggest that extracellular AßOs play a key role in the pathogenesis of AD.

19.
Acta Neuropathol Commun ; 5(1): 59, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28760161

ABSTRACT

The E693Δ (Osaka) mutation in APP is linked to familial Alzheimer's disease. While this mutation accelerates amyloid ß (Aß) oligomerization, only patient homozygotes suffer from dementia, implying that this mutation is recessive and causes loss-of-function of amyloid precursor protein (APP). To investigate the recessive trait, we generated a new mouse model by knocking-in the Osaka mutation into endogenous mouse APP. The produced homozygous, heterozygous, and non-knockin littermates were compared for memory, neuropathology, and synaptic plasticity. Homozygotes showed memory impairment at 4 months, whereas heterozygotes did not, even at 8 months. Immunohistochemical and biochemical analyses revealed that only homozygotes displayed intraneuronal accumulation of Aß oligomers at 8 months, followed by abnormal tau phosphorylation, synapse loss, glial activation, and neuron loss. These pathologies were not observed at younger ages, suggesting that a certain mechanism other than Aß accumulation underlies the memory disturbance at 4 months. For the electrophysiology studies at 4 months, high-frequency stimulation evoked long-term potentiation in all mice in the presence of picrotoxin, but in the absence of picrotoxin, such potentiation was observed only in homozygotes, suggesting their GABAergic deficit. In support of this, the levels of GABA-related proteins and the number of dentate GABAergic interneurons were decreased in 4-month-old homozygotes. Since APP has been shown to play a role in dentate GABAergic synapse formation, the observed GABAergic depletion is likely associated with an impairment of the APP function presumably caused by the Osaka mutation. Oral administration of diazepam to homozygotes from 6 months improved memory at 8 months, and furthermore, prevented Aß oligomer accumulation, indicating that GABAergic deficiency is a cause of memory impairment and also a driving force of Aß accumulation. Our findings suggest that the Osaka mutation causes loss of APP function, leading to GABAergic depletion and memory disorder when wild-type APP is absent, providing a mechanism of the recessive heredity.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , gamma-Aminobutyric Acid/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Diazepam/pharmacology , GABA Modulators/pharmacology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Gene Knock-In Techniques , Genes, Recessive , Genetic Predisposition to Disease , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Mutation , Spatial Memory/drug effects , Spatial Memory/physiology , Tissue Culture Techniques , tau Proteins/metabolism
20.
Acta Neuropathol Commun ; 5(1): 56, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28750656

ABSTRACT

Alzheimer's disease (AD) is histopathologically characterized by the build-up of fibrillar amyloid beta (Aß) in the form of amyloid plaques and the development of intraneuronal neurofibrillary tangles consisting of aggregated hyperphosphorylated Tau. Although amyloid fibrils were originally considered responsible for AD pathogenesis, recent convincing evidence strongly implicates soluble oligomeric Aß as the primary neurotoxic species driving disease progression. A third largely ignored pathological hallmark, originally described by Alois Alzheimer, is the presence of "adipose inclusions", suggestive of aberrant lipid metabolism. The molecular mechanisms underlying these "lipoid granules", as well as their potential link to soluble and/or fibrillar Aß remain largely unknown. Seeking to better-understand these conundrums, we took advantage of the powerful technology of multidimensional mass spectrometry-based shotgun lipidomics and an AD transgenic mouse model overexpressing mutant amyloid precursor protein (APP E693Δ-Osaka-), where AD-like pathology and neurodegeneration occur as a consequence of oligomeric Aß accumulation in the absence of amyloid plaques. Our results revealed for the first time that APP overexpression and oligomeric Aß accumulation lead to an additive global accumulation of nonesterified polyunsaturated fatty acids (PUFAs) independently of amyloid plaques. Furthermore, we revealed that this accumulation is mediated by an increase in phospholipase A2 (PLA2) activity, evidenced by an accumulation of sn-1 lysophosphatidylcholine and by MAPK-mediated phosphorylation/activation of group IV Ca2+-dependent cytosolic (cPLA2) and the group VI Ca2+-independent PLA2 (iPLA2) independently of PKC. We further revealed that Aß-induced oxidative stress also disrupts lipid metabolism via reactive oxygen species-mediated phospholipid cleavage leading to increased sn-2 lysophosphatidylcholine as well as lipid peroxidation and the subsequent accumulation of 4-hydroxynonenal. Brain histological studies implicated cPLA2 activity with arachidonic acid accumulation within myelin-rich regions, and iPLA2 activity with docosahexaenoic acid accumulation within pyramidal neuron-rich regions. Taken together, our results suggest that PLA2-mediated accumulation of free PUFAs drives AD-related disruption of brain lipid metabolism.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Cytosol/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Phospholipases A2, Calcium-Independent/metabolism , Aging/metabolism , Aging/pathology , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Brain/pathology , Cytosol/pathology , Disease Models, Animal , Fatty Acids, Unsaturated/metabolism , Humans , Mice, Transgenic , Phosphorylation , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Protein Kinase C/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...