Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nucleic Acids Res ; 52(3): 1498-1511, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38180813

ABSTRACT

A 'genomically' humanized animal stably maintains and functionally expresses the genes on human chromosome fragment (hCF; <24 Mb) loaded onto mouse artificial chromosome (MAC); however, cloning of hCF onto the MAC (hCF-MAC) requires a complex process that involves multiple steps of chromosome engineering through various cells via chromosome transfer and Cre-loxP chromosome translocation. Here, we aimed to develop a strategy to rapidly construct the hCF-MAC by employing three alternative techniques: (i) application of human induced pluripotent stem cells (hiPSCs) as chromosome donors for microcell-mediated chromosome transfer (MMCT), (ii) combination of paclitaxel (PTX) and reversine (Rev) as micronucleation inducers and (iii) CRISPR/Cas9 genome editing for site-specific translocations. We achieved a direct transfer of human chromosome 6 or 21 as a model from hiPSCs as alternative human chromosome donors into CHO cells containing MAC. MMCT was performed with less toxicity through induction of micronucleation by PTX and Rev. Furthermore, chromosome translocation was induced by simultaneous cleavage between human chromosome and MAC by using CRISPR/Cas9, resulting in the generation of hCF-MAC containing CHO clones without Cre-loxP recombination and drug selection. Our strategy facilitates rapid chromosome cloning and also contributes to the functional genomic analyses of human chromosomes.


Subject(s)
Cloning, Molecular , Animals , Cricetinae , Humans , Mice , Chromosomes, Artificial , Cloning, Molecular/methods , Cricetulus , CRISPR-Cas Systems , DNA , Gene Editing , Induced Pluripotent Stem Cells , Translocation, Genetic
2.
Blood Adv ; 8(3): 725-731, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38147622

ABSTRACT

ABSTRACT: Graft-versus-host disease (GVHD) is the major obstacle to performing allogeneic hematopoietic cell transplantation (allo-HCT). We and others have shown that intestinal stem cells are targeted in lower gastrointestinal GVHD. A leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)-expressing gastric stem cells (GSCs) reside at the base of the gastric glands in mice. After experimental allo-HCT, Lgr5+ GSCs significantly decreased. Parietal cells, which underwent continuous renewal by GSCs, were injured in gastric GVHD, leading to failure of gastric acidification and aerobic bacterial overgrowth in the duodenum. Fate-mapping analysis demonstrated that administration of R-Spondin1 (R-Spo1) that binds to Lgr5 for 6 days in naïve mice significantly increased proliferating epithelial cells derived from Lgr5+ GSCs. R-Spo1 administered on days -3 to -1 and from days +1 to +3 of allo-HCT protected GSCs, leading to amelioration of gastric GVHD and restoration of gastric acidification, and suppression of aerobic bacterial overgrowth in the duodenum. In conclusion, Lgr5+ GSCs were targeted by gastric GVHD, resulting in disruption of the gastric homeostasis, whereas R-Spo1 protected Lgr5+ GSCs from GVHD and maintained homeostasis in the stomach.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Mice , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Stomach
3.
Mol Ther Nucleic Acids ; 33: 391-403, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37547291

ABSTRACT

Microcell-mediated chromosome transfer is an attractive technique for transferring chromosomes from donor cells to recipient cells and has enabled the generation of cell lines and humanized animal models that contain megabase-sized gene(s). However, improvements in chromosomal transfer efficiency are still needed to accelerate the production of these cells and animals. The chromosomal transfer protocol consists of micronucleation, microcell formation, and fusion of donor cells with recipient cells. We found that the combination of Taxol (paclitaxel) and reversine rather than the conventional reagent colcemid resulted in highly efficient micronucleation and substantially improved chromosomal transfer efficiency from Chinese hamster ovary donor cells to HT1080 and NIH3T3 recipient cells by up to 18.3- and 4.9-fold, respectively. Furthermore, chromosome transfer efficiency to human induced pluripotent stem cells, which rarely occurred with colcemid, was also clearly improved after Taxol and reversine treatment. These results might be related to Taxol increasing the number of spindle poles, leading to multinucleation and delaying mitosis, and reversine inducing mitotic slippage and decreasing the duration of mitosis. Here, we demonstrated that an alternative optimized protocol improved chromosome transfer efficiency into various cell lines. These data advance chromosomal engineering technology and the use of human artificial chromosomes in genetic and regenerative medical research.

4.
Sci Rep ; 13(1): 4360, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928364

ABSTRACT

Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.


Subject(s)
Chromosomes, Artificial, Human , Dystrophin , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Chromosomes, Artificial, Human/genetics , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Sarcolemma/metabolism
6.
Sci Rep ; 12(1): 21790, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526651

ABSTRACT

Homology-directed repair-mediated knock-in (HDR-KI) in combination with CRISPR-Cas9-mediated double strand break (DSB) leads to high frequency of site-specific HDR-KI. While this characteristic is advantageous for generating genetically modified cellular and animal models, HDR-KI efficiency in mammalian cells remains low. Since avian DT40 cells offer distinct advantage of high HDR-KI efficiency, we expanded this practicality to adapt to mammalian research through sequential insertion of target sequences into mouse/human artificial chromosome vector (MAC/HAC). Here, we developed the simultaneous insertion of multiple fragments by HDR method termed the simHDR wherein a target sequence and selection markers could be loaded onto MAC simultaneously. Additionally, preparing each HDR donor containing homology arm by PCR could bypass the cloning steps of target sequence and selection markers. To confirm the functionality of the loaded HDR donors, we constructed a MAC with human leukocyte antigen A (HLA-A) gene in the DT40 cells, and verified the expression of this genomic region by reverse transcription PCR (RT-PCR) and western blotting. Collectively, the simHDR offers a rapid and convenient approach to generate genetically modified models for investigating gene functions, as well as understanding disease mechanisms and therapeutic interventions.


Subject(s)
CRISPR-Cas Systems , Recombinational DNA Repair , Mice , Animals , Humans , CRISPR-Cas Systems/genetics , Chromosomes, Artificial , Genome , Polymerase Chain Reaction , Gene Editing , Mammals/genetics
7.
Nucleic Acids Res ; 50(9): 4840-4859, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35524566

ABSTRACT

Extrahepatic delivery of small interfering RNAs (siRNAs) may have applications in the development of novel therapeutic approaches. However, reports on such approaches are limited, and the scarcity of reports concerning the systemically targeted delivery of siRNAs with effective gene silencing activity presents a challenge. We herein report for the first time the targeted delivery of CD206-targetable chemically modified mannose-siRNA (CMM-siRNA) conjugates to macrophages and dendritic cells (DCs). CMM-siRNA exhibited a strong binding ability to CD206 and selectively delivered contents to CD206-expressing macrophages and DCs. Furthermore, the conjugates demonstrated strong gene silencing ability with long-lasting effects and protein downregulation in CD206-expressing cells in vivo. These findings could broaden the use of siRNA technology, provide additional therapeutic opportunities, and establish a basis for further innovative approaches for the targeted delivery of siRNAs to not only macrophages and DCs but also other cell types.


Subject(s)
RNA, Small Interfering , Dendritic Cells , Drug Delivery Systems , Ligands , Macrophages/metabolism , Mannose/metabolism , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use
8.
Nat Commun ; 13(1): 1841, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383174

ABSTRACT

Trans-chromosomic (Tc) mice carrying mini-chromosomes with megabase-sized human immunoglobulin (Ig) loci have contributed to the development of fully human therapeutic monoclonal antibodies, but mitotic instability of human mini-chromosomes in mice may limit the efficiency of hybridoma production. Here, we establish human antibody-producing Tc mice (TC-mAb mice) that stably maintain a mouse-derived, engineered chromosome containing the entire human Ig heavy and kappa chain loci in a mouse Ig-knockout background. Comprehensive, high-throughput DNA sequencing shows that the human Ig repertoire, including variable gene usage, is well recapitulated in TC-mAb mice. Despite slightly altered B cell development and a delayed immune response, TC-mAb mice have more subsets of antigen-specific plasmablast and plasma cells than wild-type mice, leading to efficient hybridoma production. Our results thus suggest that TC-mAb mice offer a valuable platform for obtaining fully human therapeutic antibodies, and a useful model for elucidating the regulation of human Ig repertoire formation.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin Heavy Chains , Animals , Chromosomes, Artificial, Yeast , Humans , Hybridomas , Immunoglobulin Heavy Chains/genetics , Immunoglobulin kappa-Chains/genetics , Mice , Mice, Transgenic
9.
Sci Rep ; 12(1): 3009, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194085

ABSTRACT

Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) are non-integrating chromosomal gene delivery vectors for molecular biology research. Recently, microcell-mediated chromosome transfer (MMCT) of HACs/MACs has been achieved in various human cells that include human immortalised mesenchymal stem cells (hiMSCs) and human induced pluripotent stem cells (hiPSCs). However, the conventional strategy of gene introduction with HACs/MACs requires laborious and time-consuming stepwise isolation of clones for gene loading into HACs/MACs in donor cell lines (CHO and A9) and then transferring the HAC/MAC into cells via MMCT. To overcome these limitations and accelerate chromosome vector-based functional assays in human cells, we established various human cell lines (HEK293, HT1080, hiMSCs, and hiPSCs) with HACs/MACs that harbour a gene-loading site via MMCT. Model genes, such as tdTomato, TagBFP2, and ELuc, were introduced into these preprepared HAC/MAC-introduced cell lines via the Cre-loxP system or simultaneous insertion of multiple gene-loading vectors. The model genes on the HACs/MACs were stably expressed and the HACs/MACs were stably maintained in the cell lines. Thus, our strategy using this HAC/MAC-containing cell line panel has dramatically simplified and accelerated gene introduction via HACs/MACs.


Subject(s)
Chromosomes, Artificial, Human , Gene Transfer Techniques , Animals , Cell Line , Genetic Vectors , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Mice , Molecular Biology
10.
ACS Chem Biol ; 17(2): 292-298, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35020348

ABSTRACT

Extrahepatic targeted delivery of oligonucleotides, such as small interfering RNA (siRNA) and antisense oligonucleotides (ASOs), is an attractive technology for the development of nucleic acid-based medicines. To target CD22-expressing B cells, several drug platforms have shown promise, including antibodies, antibody-drug conjugates, and nanoparticles, but to date CD22-targeted delivery of oligonucleotide therapeutics has not been reported. Here we report the uptake and enhancement of siRNA gene expression knockdown in CD22-expressing B cells using a chemically stabilized and modified CD22 glycan ligand-conjugated siRNA. This finding has the potential to broaden the use of siRNA technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of siRNAs to B cell lymphomas.


Subject(s)
Oligonucleotides, Antisense , Polysaccharides , Gene Knockdown Techniques , Ligands , Polysaccharides/metabolism , RNA, Small Interfering/genetics
11.
Mol Ther Nucleic Acids ; 23: 629-639, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33552683

ABSTRACT

Genetic engineering of induced pluripotent stem cells (iPSCs) holds great promise for gene and cell therapy as well as drug discovery. However, there are potential concerns regarding the safety and control of gene expression using conventional vectors such as viruses and plasmids. Although human artificial chromosome (HAC) vectors have several advantages as a gene delivery vector, including stable episomal maintenance and the ability to carry large gene inserts, the full potential of HAC transfer into iPSCs still needs to be explored. Here, we provide evidence of a HAC transfer into human iPSCs by microcell-mediated chromosome transfer via measles virus envelope proteins for various applications, including gene and cell therapy, establishment of versatile human iPSCs capable of gene loading and differentiation into T cells, and disease modeling for aneuploidy syndrome. Thus, engineering of human iPSCs via desired HAC vectors is expected to be widely applied in biomedical research.

12.
Medicines (Basel) ; 8(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535532

ABSTRACT

Genetic hypomyelinating diseases are a heterogeneous group of disorders involving the white matter. One infantile hypomyelinating leukoencephalopathy is associated with the homozygous variant (Cys4-to-Ser (C4S)) of the c11orf73 gene. Methods: We observed that in mouse oligodendroglial FBD-102b cells, the C4S mutant proteins but not the wild type ones of C11orf73 are microscopically localized in the lysosome. And, they downregulate lysosome-related signaling in an immunoblotting technique. Results: The C4S mutant proteins specifically interact with Filamin A, which is known to anchor transmembrane proteins to the actin cytoskeleton; the C4S mutant proteins and Filamin A are also observed in the lysosome fraction. While parental FBD-102b cells and cells harboring the wild type constructs exhibit morphological differentiation, cells harboring C4S mutant constructs do not. It may be that morphological differentiation is inhibited because expression of these C4S mutant proteins leads to defects in the actin cytoskeletal network involving Filamin A. Conclusions: The findings that leukoencephalopathy-associated C11ORF73 mutant proteins specifically interact with Filamin A, are localized in the lysosome, and inhibit morphological differentiation shed light on the molecular and cellular pathological mechanisms that underlie infantile hypomyelinating leukoencephalopathy.

13.
Oncotarget ; 9(59): 31422-31431, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30140380

ABSTRACT

Photodynamic therapy (PDT) utilize a photosensitizing agent and light for cancer therapy. It exerts anti-cancer effect mainly by inducing vascular occlusion at the irradiated site. By controlling the irradiation area, PDT can be used in a tumor-specific manner. However, the non-specific cellular damage in the surrounding normal tissue is still a serious concern. Photoimmunotherapy (PIT) is a new type of targeted cancer therapy that uses an antibody-photon absorber conjugate (APC). The superiority of PIT to PDT is the improved target specificity, thereby reducing the damage to normal tissues. Here, we developed a novel APC targeting epithelial cell adhesion molecule (EpCAM) as well as a negative control APC that does not bind to the EpCAM antigen. Our in vitro analysis of APC cytotoxicity demonstrated that the EpCAM APC, but not the negative control, was cytotoxic to EpCAM expressing COLO 205 cells after photoirradiation, suggesting that the cytotoxicity is antigen-dependent. However, in our in vivo analysis using a mouse xenograft tumor model, decreased volume of the tumors was observed in all the mice treated with irradiation, regardless of whether they were treated with the EpCAM APC or the negative control. Detailed investigation of the mechanism of these in vivo reveal that both APCs induce vascular occlusion at the irradiation site. Furthermore, the level of vascular occlusion was correlated with the blood concentration of APC, not the tumor concentration. These results imply that, similar to PDT, PIT can also induce non-targeted vascular occlusion and further optimization is required before widespread clinical use.

14.
J Exp Med ; 214(12): 3507-3518, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29066578

ABSTRACT

The intestinal microbial ecosystem is actively regulated by Paneth cell-derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host-microbiota cross talk toward therapeutic benefits.


Subject(s)
Dysbiosis/etiology , Dysbiosis/prevention & control , Graft vs Host Disease/complications , Paneth Cells/pathology , Thrombospondins/pharmacology , Thrombospondins/therapeutic use , Administration, Oral , Animals , Bacteria/metabolism , Cell Differentiation/drug effects , Cytoprotection/drug effects , Dysbiosis/pathology , Female , Graft vs Host Disease/pathology , Humans , Intestines/pathology , Mice, Inbred C57BL , Paneth Cells/drug effects , Paneth Cells/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Stem Cell Transplantation , Stem Cells/drug effects , Stem Cells/metabolism , alpha-Defensins/metabolism
15.
Cancer Med ; 6(4): 798-808, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28211613

ABSTRACT

Carcinoembryonic antigen (CEA) is a classic tumor-specific antigen that is overexpressed in several cancers, including gastric cancer. Although some anti-CEA antibodies have been tested, to the best of our knowledge, there are currently no clinically approved anti-CEA antibody therapies. Because of this, we have created the novel anti-CEA antibody, 15-1-32, which exhibits stronger binding to membrane-bound CEA on cancer cells than existing anti-CEA antibodies. 15-1-32 also shows poor affinity for soluble CEA; thus, the binding activity of 15-1-32 to membrane-bound CEA is not influenced by soluble CEA. In addition, we constructed a 15-1-32-monomethyl auristatin E conjugate (15-1-32-vcMMAE) to improve the therapeutic efficacy of 15-1-32. 15-1-32-vcMMAE showed enhanced antitumor activity against gastric cancer cell lines. Unlike with existing anti-CEA antibody therapies, antitumor activity of 15-1-32-vcMMAE was retained in the presence of high concentrations of soluble CEA.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Carcinoembryonic Antigen/immunology , Oligopeptides/chemistry , Stomach Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Mice
17.
Sci Rep ; 6: 18849, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732094

ABSTRACT

Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the TGF-beta superfamily. Recently, several soluble BMP receptors, such as ActRIIA-Fc, ActRIIB-Fc, and ALK1-Fc, are undergoing clinical trials. Both BMPRIA and BMPRIB are type I BMP receptors, and while BMPRIA-Fc has been reported to have bone-increasing properties, there have been no investigations concerning the biological functions of BMPRIB-Fc. Therefore, comparing the effects of BMPRIA-Fc and BMPRIB-Fc in vivo should be helpful in revealing the differences in biological function between BMPRIA and BMPRIB, and would also aid in the evaluation of BMPRIB-Fc as a therapeutic agent. Here, we produced Tg chimeras in which BMPRIA-Fc and BMPRIB-Fc proteins circulated at high concentrations (36.8-121.4 µg/mL). Both Tg chimeras showed a significant increase of bone volume and strength. Using histological analysis, adenoma of the glandular stomach was observed only in BMPRIA-Fc chimeras suggesting the tumorigenic activity of this protein. Administration of recombinant BMPRIB-Fc protein to normal mice also increased bone volumes. Finally, treatment with BMPRIB-Fc decreased the area of osteolytic regions in a mouse model of breast cancer metastasis. In conclusion, our data suggest that BMPRIB-Fc can be used for the treatment of bone-related disorders with a lower risk than BMPRIA-Fc.


Subject(s)
Bone Diseases/metabolism , Bone Morphogenetic Protein Receptors, Type I/metabolism , Animals , Bone Diseases/diagnosis , Bone Diseases/drug therapy , Bone Morphogenetic Protein Receptors, Type I/blood , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Bone Substitutes , Disease Models, Animal , Ligands , Mice , Mice, Transgenic , Osteolysis/drug therapy , Protein Binding , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , X-Ray Microtomography
18.
Exp Hematol ; 43(11): 963-973.e4, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26213229

ABSTRACT

Recent studies have revealed the crucial role of the niche which supports B-lymphocyte differentiation from hematopoietic stem cells. In this study, we aimed to identify a novel regulator of B lymphopoiesis secreted in the specific niche using the signal sequence trap method. Among the identified proteins from MS5 stromal cells, expression of pleiotrophin, placental proliferin 2, and osteoblast stimulating factor 5 (OSF-5) was dominantly high in several stromal cell lines. We found that OSF-5 suppressed early B lymphopoiesis in transgenic mice producing the target protein. The number of pre-B and immature B cells was reduced by more than half compared with control in the transgenic mice. In vitro studies showed that a secreted variant of OSF-5 inhibited the proliferation and colony formation of pre-B cells, whereas cell-intrinsic form had no influence on B lymphopoiesis. The main components of the B-lymphopoietic niche, osteoblasts in mice and mesenchymal cells in humans, are primary producers of OSF-5. These results define a novel mechanism of B lymphopoiesis in bone marrow. In the specific niche, B-lymphocyte differentiation is fine-tuned by negative regulators as well as supportive factors.


Subject(s)
Carrier Proteins/metabolism , Cell Differentiation/physiology , Cell Proliferation/physiology , Cytokines/metabolism , Lymphopoiesis/physiology , Precursor Cells, B-Lymphoid/metabolism , Stem Cell Niche/physiology , Animals , Carrier Proteins/genetics , Cytokines/genetics , Female , Humans , Male , Mice , Mice, Transgenic , Precursor Cells, B-Lymphoid/cytology , Stromal Cells/cytology , Stromal Cells/metabolism
19.
Eur J Immunol ; 45(5): 1390-401, 2015 May.
Article in English | MEDLINE | ID: mdl-25676235

ABSTRACT

Mammals have evolved to protect their offspring during early fetal development. Elaborated mechanisms induce tolerance in the maternal immune system for the fetus. Female hormones, mainly estrogen, play a role in suppressing maternal lymphopoiesis. However, the molecular mechanisms involved in the maternal immune tolerance are largely unknown. Here, we show that estrogen-induced soluble Frizzled-related proteins (sFRPs), and particularly sFRP5, suppress B-lymphopoiesis in vivo in transgenic mice. Mice overexpressing sFRP5 had fewer B-lymphocytes in the peripheral blood and spleen. High levels of sFRP5 inhibited early B-cell differentiation in the bone marrow (BM), resulting in the accumulation of cells with a common lymphoid progenitor (CLP) phenotype. Conversely, sFRP5 deficiency reduced the number of hematopoietic stem cells (HSCs) and primitive lymphoid progenitors in the BM, particularly when estrogen was administered. Furthermore, a significant reduction in CLPs and B-lineage-committed progenitors was observed in the BM of sfrp5-null pregnant females. We concluded that, although high sFRP5 expression inhibits B-lymphopoiesis in vivo, physiologically, it contributes to the preservation of very primitive lymphopoietic progenitors, including HSCs, under high estrogen levels. Thus, sFRP5 regulates early lympho-hematopoiesis in the maternal BM, but the maternal-fetal immune tolerance still involves other molecular mechanisms that remain to be uncovered.


Subject(s)
B-Lymphocytes/immunology , Estrogens/immunology , Intercellular Signaling Peptides and Proteins/immunology , Lymphopoiesis/immunology , Adaptor Proteins, Signal Transducing , Animals , B-Lymphocytes/cytology , Cell Lineage , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Histocompatibility, Maternal-Fetal/immunology , Immune Tolerance , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Lymphopoiesis/genetics , Male , Maternal-Fetal Exchange/immunology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pregnancy , Up-Regulation
20.
Transgenic Res ; 23(3): 441-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24488595

ABSTRACT

Transchromosomic (Tc) technology using human chromosome fragments (hCFs), or human artificial chromosomes (HACs), has been used for generating mice containing Mb-sized segments of the human genome. The most significant problem with freely segregating chromosomes with human centromeres has been mosaicism, possibly due to the instability of hCFs or HACs in mice. We report a system for the stable maintenance of Mb-sized human chromosomal fragments following translocation to mouse chromosome 10 (mChr.10). The approach utilizes microcell-mediated chromosome transfer and a combination of site-specific loxP insertion, telomere-directed chromosome truncation, and precise reciprocal translocation for the generation of Tc mice. Human chromosome 21 (hChr.21) was modified with a loxP site and truncated in homologous recombination-proficient chicken DT40 cells. Following transfer to mouse embryonic stem cells harboring a loxP site at the distal region of mChr.10, a ~4 Mb segment of hChr.21 was translocated to the distal region of mChr.10 by transient expression of Cre recombinase. The residual hChr.21/mChr.10ter fragment was reduced by antibiotic negative selection. Tc mice harboring the translocated ~4 Mb fragment were generated by chimera formation and germ line transmission. The hChr.21-derived Mb fragment was maintained stably in tissues in vivo and expression profiles of genes on hChr.21 were consistent with those seen in humans. Thus, Tc technology that enables translocation of human chromosomal regions onto host mouse chromosomes will be useful for studying in vivo functions of the human genome, and generating humanized model mice.


Subject(s)
Chromosomes, Artificial, Human/genetics , Chromosomes, Human, Pair 21/genetics , Gene Transfer Techniques , Mice, Transgenic/genetics , Animals , Chimera/genetics , Genome, Human , Humans , In Situ Hybridization, Fluorescence , Integrases/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...